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PREFACE

The model investigations reported herein were requested by the US Army
Engineer District, Wilmington (SAW), during a December 1979 telephone conver-
sation with the US Army Engineer Waterways Experiment Station (WES) Coastal
Engineering Research Center (CERC). Funding authorization was granted by SAW
on Intra-Army Order No. SAWEN-PC-80-225 dated 1 April 1980 and Change Orders
numbers 1 through 8 dated 22 December 1980, 8 January 1982, 23 March 1982,

22 July 1982, 12 October 1982, 10 November 1982, 27 January 1983, and
30 November 1983, respectively.

Model tests were conducted at WES during the period January 1981 to July
1984, under the general direction of Mr. H. B. Simmons, former Chief, Hydrau-
l1cs Laboratory, Dr. J. R. Houston, Chief, CERC, and Mr. C. C. Calhoun, Jr.,
Assistant Chief, and Mr. C. E. Chatham, Chief, Wave Dynamics Division, and
Mr. D. D. Davidson, Chief, Wave Research Branch. The Wave bynamics Division
and its personnel were transferred to the Coastal Engineering Research Center
under the direction of Dr. R. W. Whalin, Chief of CERC on 1 July 1983. The
model tests were planned and conducted by Messrs. R. D. Carver and D. G,
Markle, Research Hydraulic Engineers, and Mr. W. G. Dubose, Engineering Tech-
nician, with the assistance of Mr. C. L. Lewis, Engineering Technician,

Mr. K. A. Turner, Computer Specialist, Mr. H. C. Greer, Electronics Engineer,
and Messrs. L. B. Smithhart, S. W. Guy, and L. L. Friar, Electronics Techni-
cians. Prototype information was provided by and model test plans were coor-
dinated through Messrs. Tom Jarrett, Bill Dennis, and Lim Vallianos, SAW.
Additional technical assistance was provided by Messrs. Bob Taylor and

Don Jones, Naval Civil Engineering Laboratory and Drs. Maxwell Cheung and
Charles Babcock, MCA Engineers, Inc. Dr. Robert Jensen prepared Part III of
this report. The remainder of this report was prepared by Messrs. Carver,
Markle, and Dubose.

Liaison was maintained during the course of the investigation by means
of conferences, progress reports, and telephone conversations.

Commander and Director of WES during the preparation and publication of

this report was COL Dwayne G. Lee, CE. Technical Director was Dr. Robert W,
Whalin.
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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(wetric) units as follows:

Multiply By To Obtain
feet 0.3048 metres
feet per second 0.3048 metres per second
feet per second per second 0.3048 metres per second per second
inches 25.4 millimetres
kips 4448,222 newtons
knots (international) 0.5144444 metres per second
pounds (force) 4,448222 newtons
pounds (force) per inch 175.1268 newtons per metre
pounds (mass) 0.4535924 kilograms

pounds (mass) square feet 0.028317 kilograms square metres




SLOPING FLOAT BREAKWATER STUDY
OREGON INLET, NORTH CAROLINA

Coastal Model Investigation

PART 1I: INTRODUCTION

Background

1. Oregon Inlet (Figure 1), the northernmost opening through the bar-
rier reef of the North Carolina coast, is of major hydrological significance
in that it is the only existing communicator between the sounds of north-
eastern North Carolina and the Atlantic Ocean. The area immediately adjacent
to Oregon Inlet includes all of Dare County. Principal economic activities
include services, recreation, commercial fishing, seafood processing, and boat
building.

2. The existing project channel depth of 14 ft* across the ocean bar at
Oregon Inlet is neither deep enough nor stable enough for safe navigation by
operators of commercial fishing vesselg from North Carolina and other out-of-
state ports. In an effort to provide safe passage for commercial fishing
craft and other commercial ships, the US Army Engineer District, Wilmington
(SAW), has proposed a channel improvement and stabilization project for Oregon
Inlet. The proposed project will include a 20-ft-deep and 400-ft-wide channel
through the ocean bar at Oregon Inlet. Protection for the new channel will be
provided by rubble-mound jetties.

3. It is anticipated that net differences in north-south longshore
trangport rates will necessitate bypassing (dredging) significant quantities
of sand. The primary system for sand bypassing at Oregon Inlet would involve
the use of a conventional cutter-suction pipeline dredge to remove material
directly from the accretion fillet that would form updrift of the stabilized
inlet. Due to the severity of the wave climate in the project area, the effi-
ciency of the sand bypassing operation would be maximized through the use of a

transportable breakwater that would be deployed seaward of the fillet borrow

* A table of factors for converting non-SI units of measurement to SI
(metric) units is presented on page 3.
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area., The breakwater would remain onsite during the dredging operation after
which it would be removed and stored in a protected area or possibly used at
other project sites, Advantage would be taken of the seasonal variability of
the wave climate by scheduling sand bypassing during the low wave energy pe-
riod that extends from May to August of each year. Based on an extensive lit-
erature review and analysis of available model and prototype performance data,
SAW determined that the sloping float breakwater (SFB) concept (Patrick 1951,
Raichlen and Lee 1978, and Raichlen 1981) is the most promising alternative

available.

Description of the SFB Concept

4. The SFB is a wave barrier that consists of a row of flat slabs or
panels whose weight distribution is such that each panel rests with one end
above the water surface and the other end on the bottom. Various types of
construction are possible; however, hollow steel or concrete barges appear to
have the most promise (Jones 1980). Deployment would consist of assembling
unballasted modules at the surface and then partially flooding the barges so
the stern sinks and rests on the bottom and the bow floats above the water
surface. The height of protrusion of the bow above the water surface (free-
board) is controlled by flooding a selected number of pontoons or barge com-
partments. Barges are positioned so that the bow faces into the primary di-~
rection of wave attack and mooring lines are attached between the barge and a
bottom anchor. Figure 2 shows two barges moored together and Figure 3 1llus-

trates a possible arrangement for groups of eight barges.

Purpose of Model Study

5. A need for hydraulic model tests arose from the intent of SAW to se-
lect a SFB configuration which is optimum in terms of cost-effectiveness;
(i.e., the selection of breakwater length, positioning, connectors, and moor-
ing system is to be based on a least-cost alternative in terms of combined
capitalized initial construction costs and expected annual operational and
maintenance costs). Determination of these costs necessitated as inputs the
determination of transmitted wave heights, mooring line forces, intermodule

connector forces, bottom impact velocities, and barge angularities as a
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Figure 2. The SFB--an artist's conception
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Figure 3. Two groups of SFB's




function of wave climate. The purposes of the model studies were to conduct a :fﬂ
sufficient number of tests, both two-dimensional (2-D) (functional tests) and
three-dimensional (3-D) (side-connector tests), to provide the data required
for this design optimization.
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PART II: THE MODELS

Design of Models

Scale selection

6. It is imperative in any model investigation of wave structure inter-
action that model dimensions (i.e., model scales) are made large enough to
preclude any significant scale effects. Descriptions of numerous floating
breakwater model studies are found in the literature; however, no comprehen-
sive investigation of possible scale effects has been performed. Protntype
flow phenomena and structure motions are primarily controlled by gravitational
forces; consequently, models of this type are designed and operated in accor-
dance with Froude's model law, while Reynolds numbers are not in similitude.
This dissimilarity has no effect on the validity of test results if model
Reynolds numbers are large enough to ensure turbulent flow for all test condi-
tions. Since the Reynolds number is directly proportional to the product of a
characteristic length and velocity, its values are maximized by making the
model as large as possible.

7. Considering (a) capabilities (wave board velocities, electronic
control accuracy, etc.) of the largest monochromatic/spectral wave generators
available for the study, (b) maximum stable wave convergence, and (c) the
required range of test conditions it was determined that a scale ratio of 1:25
was the largest practical value to use (most importantly, this value would en-
sure turbulent flow for all test conditions). Based on Froude's model law and
the linear scale of 1:25, the following model-to-prototype relations were
derived for the 2-D and 3-D models:

Model~to-Prototype

Characteristic Dimension Scale Relation
Length L Lr = 1:25
2 2
Area L A =1L" = 1:625
T T
3 3
Volume L V =L7 = 1:15625
r r
Time T T = LI/2 = 1:5
T T
Weight F r = L3(64/62.4) = 1:16026

Dimensions are in terms of force (F), length (L), and time (T).*

* Symbols and abbreviations are listed in the Notation (Appendix A).
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Design of model SFB's (functional tests) '

8. The functional model tests were conducted with SFB's that simulated i

Navy Lightered (NL) pontoon-type barges that measured 72.3, 89.6, and
118.4 ft long. The barges are 21 ft wide and 5 ft deep. Bow and stern pon- ot
toons are 7 ft by 7 ft in plan and those comprising the interior rows are 5 ft

by 7 ft. All pontoons are 5 ft deep. Structural steel assembly angles (6 by *

6 by 1/2 in. thick) are used to connect the pontoons. Exact geometric details 5
of the prototype barges, needed for model design, were obtained from '"Pontoon h
Gear Handbook Navy Lightered (NL) Equipment P-Series" (Naval Facilities u
Engineering Command 1974). The NL pontoon structures were initially con- ﬁ

sidered since the previous developmental work by the Navy, which included some
field tests of prototype units, was based on the use of modified pontoon W)
barges. ¢
. 9. As previously discussed, the bow freeboard and the angle of inclina-
. tion are controlled by flooding a specified number of pontoons. The struc- *.

tures tested herein represented ballasted conditions that allowed for about o,

E 5 ft of free-board. Required ballasting was as follows: ﬂ
i; Number of Rows ::
: SFB of Pontoons Weight, 1b ¢
Length, ft Total Flooded Unballasted SFB Ballast Total
' 72.3 12 8 108,000 266,000 374,000 ﬁ
E 89.6 15 11 134,000 366,000 500,000 E
: 118.4 20 14 177,000 467,000 644,000 .'
: 10. Important geometric and dynamic details of the prototype barge were ﬁ
: considered in the design and the construction of the model sections. Overall ‘N
; prototype dimensions were precisely reproduced and all major parameters that i
l control dynamic response (i.e., weight, center of gravity, mass moments of v
; inertia, and angle of inclination) were reproduced within *1.0 percent. It §
: should be noted that the model structures were 2,96 ft wide. Thus, a proto- &
: type width of 74.0 ft (or 3.5, 21-ft-wide barges) was represented. Because of :3
’ the 2-D nature of the tests, this dissimilarity had no effect on model results ”
[ even though the model structures represent 3.5 widths of a 21-ft-wide barge. $
! All model results are presented relative to a normal 2l-ft-wide barge. The :J
; model SFB's were constructed from marine plywood, aluminum plate, and styro- v
‘ foam, Photos 1 and 2 show the 89,6~ and 118.4-ft model structures, v
i respectively. ;{
) .
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Design of model SFB's
(side~connector tests)

11. Based on both technical and economic analyses of data gathered dur-
ing the Navy field tests and the 2-D functional model tests, the structural
design of the SFB was changed to a prestressed concrete barge that measured
130 ft wide, 90 ft long, and 5.5 ft deep with consideration given to possibly
connecting two such barges along their 90-ft sides (Figure 4). Connectors
would be located 6.75 ft inward from the bow and stern and at the center of
the 90-ft sides. The bow and stern connectors would resist vertical loads and
loads along the 130-ft barge axis while the center connector would resist
loads along the 90-ft length. These connectors would give the two barges
freedom of movement analogous to a door hinge. The barge interior would be
compartmentalized and a portion of the compartments toward the stern of the
barge would be ballasted with seawater so that one of its 130-ft-long sides
(stern) would rest on the seafloor while the other (bow) would be above water
and facing the open ocean. Each of the barges would have ballasted and
unballasted weights of 3,566,600 and 2,175,000 1b, respectively. Mass moments
of inertia and centers of gravity would be as shown in Figure 4. This amount
of ballast will cause the SFB to float at an angle of 14.5 deg relative to the
horizontal when the stern of the SFB is placed in a 20-ft water depth.

12, The model barges were constructed of aluminum plates of various
thicknesses and alloy types (Photos 3 and 4). The model barges were designed
and constructed so they could be ballasted and deballasted with fresh water
and were scaled to reproduce the overall geometry, weight, mass moments of
inertia, and centers of gravity of the ballasted and unballasted prototype
barges.

13. The model SFB barges were connected by two instrumented connectors
that were centered on the 5.5-ft (prototype) dimension of the barges and
located 6.75 ft (prototype) from the bow and stern (Figures 4-7 and Photo S5).
The spacing between the prototype barges was not specified prior to model
construction. Guidelines from SAW only specified that the connectors be kept
as compact as possible. The resulting assembled model connector length cor-
responded to a prototype barge spacing of 4.7 ft. The model did not incor-
porate the third connector, but, instead, simulated its resistance in the
other two model connectors. Thus, forces along the 90-ft axes could be mea-

sured at the two simulated connectors and then the loadings could be

11
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INSTRUMENTED
HALF OF CONNECTION

BEARING HOUSING

Figure 5. Model connector assembly

numerically transferred to the proper location (center of the 90-ft sides)
during the analysis of the model data.

Model mooring system (functional tests)

14, The functional model tests were conducted with a mooring system
that simulated a 150-ft-long, 8-in. circumference, double braided nylon rope.
The breaking strength of this line is 230,000 1b. With one line attached to
each 2]1-ft-wide NL pontoon barge, the breaking strength of the mooring line
per foot of breakwater width was about 11,000 1b/ft. The stress-strain dia-

gram for this material is nonlinear; therefore, restoring force characteris-

tics are also nonlinear.

15. The nonlinear restoring force characteristics of the nylon line
were simulated with a series of four linear springs (see Photo 6). The spring
system was designed and fabricated by Dr. Fredric Raichlen, California Insti-
tute of Technology, and a detailed description of design considerations and

procedures is presented in "Experiments with a Sloping Float Breakwater in

13
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SECTION A-A

Bearing housing half of model connector

Figure 7.




Water Waves-Phase I" (Raichlen 1981). The spring system functions as follows:
for small deflections all springs act in series; however, after a pre-
determined deflection a stop is reached and only three of the springs can
deflect further, After the system deflects a certain additional amount an-
other stop is reached and two springs act. Finally, a third stop is reached
and only one spring continues to elongate.

16. The spring system with the intermediate stops was calibrated by
attaching weights and measuring the deflection. Results of calibration were
in excellent agreement with the desired force-displacement relationship
(£2.0 percent).

Model mooring system
(side-connector tests)

17. As previously noted, the structural design of the SFB was changed

to a 130-ft-wide post-tensioned concrete barge prior to the initiation of the
3-D side connector tests. In addition, the mooring arrangement was modified
from that used in the 2~D functional test and consisted of six mooring lines
arranged as shown in Figure 4. Each mooring line would be 245 ft long and
composed of 110 ft of steel chain and 135 ft of 20-in. circumference, 2 in !
braided nylon rope. The nylon rope has wet and dry breaking strengths of
992,000 1b and 1,050,000 1b, respectively. Based on the wet breaking strength
of the nylon rope, the breaking strength of the mooring system was equivalent
to 14,200 1b/ft of breakwater or slightly stronger than the breaking strength
used in the functional tests. Six spring systems were designed, constructed,
and calibrated to simulate the elasticity of the 135-ft-long nylon portion of
the prototype mooring line. A spring system was installed on each of the six
mooring lines. It was necessary to suspend the spring systems above the
water; therefore, a pulley was designed and constructed of Plexiglas and
Teflon. The pulleys were attached to the flume floor in positions that
corresponded to the prototype anchor weight locations, and a monofilament line
was attached between the barges and each spring system. Due to the limited
space in the test facility, the model mooring line length between the barge
and pulley corresponded to a prototype length of 150 ft. This represented

15 ft of chain and 135 ft of nylon line,

The use of the shorter overall length of the mooring line did not impact on
the test results since the elasticity of the mooring system had been

simulated.

16
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Test Facilities and Equipment

Test facility (functional tests)

18. All tests were conducted in a 260-ft-long concrete wave flume
(Figure 8) which converges from a width of 10.1 ft at the wave generator to a
width of 3.2 ft in the area of the test sections (Photo 7). Filters were
installed immediately shoreward of the generator to minimize reflected wave
heights. The location of test sections was 160 ft from the wave generator.
Local prototype bathymetry was represented by a 1V-on~50H slope for a simu-
lated prototype distance of 1,500 ft (60 ft, model) seaward of the test sec-

tion, The flume was equipped with a horizontal displacement hydraulic-actuated
wave generator capable of producing both monochromatic and spectral wave
conditions,

Test facility (side-connector tests)

19. All tests were conducted in a T-shaped wave basin 164 ft long, 43
and 15 ft wide at the top and bottom of the T, respectively, and 3.3 ft deep
(Figure 9). The flume was equipped with a horizontal displacement, hydraulic-
actuated wave generator capable of producing both monochromatic and spectral
waves., Like the functional tests, prototvpe bathymetry was represented by a
1V-on-50H slope for a simulated prototype distance of 1,500 ft (60 ft, model)
seaward of where the stern of the prototype barge would rest on the seafloor
in a 20-ft water depth. This placed the stern of the model barge approxi-
mately 130 ft (model) from the generator.

Data Acquisition and Control System (Both Models)

20. Because of the complexity of the study and anticipated volume of
model data to be collected, an automated data acquisition and control sys-
tem (ADACS) with supporting software for model control, data acquisition, and
analyses was used. Important characteristics and capabilities of the system
are as follows:

a. Model wave characteristics.

(1) Wave frequencies as high as 2 Hz (wave period range of
0.50 to 25.00 sec).

(2) Wave heights in an operating range of 0.0l to 1.0 ft.
(3) Wave-height accuracy of *0,001 ft,

17

l
A<t . U
L N .......".'.54‘5.. U R D ML h W

L MORUASEAAANINS JOMUMTAX LT XN On/0N 00 : C O 3 -
L R G B IO N K R R .'l“.'o.ﬁ'l "a‘.‘l 'u"‘o‘.‘c KA ?‘n ‘.‘""A .‘1‘.‘0“.'0‘.

AL IR N Dl I R L DERS AT DR AN



e e >

o

.2€ ["oe ' .

.
.

WAVE
ABSORBER

/ BREAKWATERS

1V:50H MOLDED CONCRETE SLOPE
150

-

PLAN VIEW
ELEVATION VIEW
——
Test facility layout (functional tests)

GUIDE VANE
| 1.0
7.04
54
110’

SPECTRAL WAVE GENERATOR

WAVE FILTERS
DISTANCES) TO ENHANCE DETAIL
Figure 8.
‘—-

WAVE ABSORBER

X
L
NOTE: X AND Z DISTANCES ARE AMPLIFIED 4 TIMES (RELATIVETO Y

18

&
S e T Y T S iy ¥ 5 o Q “"""'7"’“
AN G S e Ry Db A DN D OM I O O I T DT s PO




WAVE ABSORBER X

79.6
= -50.0

WAVE GENERATOR—»

EL

<
~

164.0°
133

PLAN
o SWL

SECTION A-A

(side-connector tests)

60.0

Test flume geometry and wave gage locations

[}

WAVE GAGES
75.0

+-<+— WAVE GAGES

la
[

y3gy0se
1 IAVM

WAVE »
Figure 9.

WA VE ~»
ABSORBER

30.7
ABSORBER
|l e
! [T v‘

94

<

°* ELEVATIONS ARE IN PROTOTYPE FEET REFERRED TO NATIONAL GEODETIC VERTICAL DATUM

* LINEAR DIMENSIONS ARE IN MODEL FEET

AI

ose !

19 .,'0:




o
L]

Sampling techniques.

(1) Data collected over at least 150 wave periods.

(2) Sampling frequency variable and high enough to define the
first three harmonics of the 2-Hz wave frequency (minimum
sampling rate of 60 samples per cycle).

(3) Minimum time delay (not to exceed 6 m/sec) between sam-
pling digitally the first and last wave gage during any
one scan of the gages, and this time delay should be con-
stant and independent of the sampling frequency.

(4) Time interval between scans of all gages should be con-
trolled to within a few microseconds.

c. Recording modes.

(1) Digital recording of data from all channels in binary code
with provisions for BCD recording of specific information
regarding test identification and data analysis.

(2) Digital data recorded on 9-track magnetic tape with IBM
compatible record format.

(3) Continuous analog recording of all chanmels.
(4) Time correlation of digital and analog recording modes.

d. Calibration of wave gages.

(1) Efficient and accurate means of calibrating the wave gages
before a series of wave tests.

(2) Recording of calibration data in digital and analog modes.
21. The system configuration (Figure 10) of ADACS consists of the fol-
lowing subsystems:
a. Digital data recording and controls.
. Analog recorders and channel selection circuits.

. Wave and force sensors and interfacing equipment.

(& [0 (o |

. Wave generator unit and control equipment.

22. The analog recording subsystem acts as a backup for ADACS and a
visual display for operator inspection of analog signals from wave sensors.
This subsystem has manual or automated selection and control of five 12-

channel oscillographs.

Test Procedures

Calibration of test
facility (both models)

23. The normal procedure at the US Army Engineer Waterways Experiment

Station (WES) is to calibrate the wave facility without the test section in

20
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the facility. This is the most accurate means of calibrating and is analogous
to the prototype conditions for which the measured and/or hindcast wave data
were determined. In both test facilities, electrical resistance-type wave
gages were positioned in the wave flume at a point that would coincide with
the location of the proposed breakwater, and the wave generator was calibrated
for various selected wave conditions.

24, Monochromatic wave calibration was achieved by simply varying the
amplitude of the wave board motion for various frequencies, thus obtaining
wave height as a function of wave board amﬁlitude and frequency of motion. An
iterative procedure was used in the spectral wave calibration. For each com-
bination of peak spectral wave period Tp » spectrally based wave height
Hmo ,» and energy-frequency distribution, a command signal was generated that
assumed the amplitude of the wave board motion was equal to the wave height.
Characteristics of the resulting spectrum were measured, compared with the
desired distribution, and the command signal modified. This procedure was re-
peated until the desired wave characteristics were obtained at the wave gages.
Typically, four or five iterations per spectral condition were required to ob-
tain the final wave board command signals. Part III presents a detailed
description of how the spectra wave conditions were selected and developed.

Test setup (functional tests)

25. The mooring system of the SFB's was represented by the linear
E spring system described in paragraphs 14-16. Mooring forces were measured by
' a load cell (Force Gage 1) connected to the spring mooring system and a load
link (Force Gage 2) which was part of an inextensible line extending from the
spring system through a laboratory-quality Teflon pulley and, finally, to the
i bow of the barge. Photo 7 shows a general view of the model setup. Photo 6
| shows a close-up view of Force Gage 1 and the spring mooring system and
Photo 8 shows a close-~up view of Force Gage 2.
26. Wave heights were measured by water-surface piercing, parallel-rod

wave gages (visible in the background of Photos 6 and 7). Each wave gage was

- e as e x m e

connected to a Wheatstone bridge (Figure 11) which measured the conductance of
the water. The output of each gage was routed through shielded cables to its
) signal conditioning equipment where it was processed for recording. The out-
‘ put of the signal conditioning equipment was connected through shielded cables
to analog oscillographs where an analog time history was recorded and to the

analog multiplexer of the digital recording subsvstem where it was digitized
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and recorded in a binary format on magnetic tape and/or disc. The signal con- ,.:i
:

ditioning equipment (Figure 12) consists of a carrier amplifier and various 3::*'
pover supplies. This system can detect changes in water-surface elevations to o
i

an accuracy of $0,001 ft. Wave gages, to measure transmitted wave heights, ! :
i

were positioned at locations that correspond to one half of the wavelength }‘4.
shoreward of the SFB for the various wave periods investigated. "
27. Velocities were obtained with a Teledyne Gurley Model 700 flow X

Al

meter. The sensor was positioned about 1 ft (prototvpe) shoreward of the SFB :j
'\

and about 1.25 ft (prototype) above the flume bottom. ) :
Tegst setup (side-connector tests) o
28, The barge connectors described in paragraph 13 were composed of an

F» o

instrumented section and a bearing housing section. The instrumented portions \ ::
L

of the connectors (Figure 6 and Photo 9) were strain gaged and calibrated in ‘::
.\

such a manner that positive and negative loads in the x-, y-, and z-directions it
(Figures 4-7) could be resolved based on output voltages of three Wheatstone ,\
bridges incorporated into the connectors' instrumented circuitry. ::
!

29, A potentiometer was connected to the bow of one barge to measure ',:‘:‘

§

the time history of the angularity of the barges relative to one another dur- i
ing their exposure to wave attack (Figure 4 and Photo 5). An angle of 180 deg S
[ )it

)
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Figure 12, Signal conditioning equipment for
wave rod amplifiers
(Figure 4) was defined as the static reference angle. Angle measurements less
than or greater than 180 deg were defined as corresponding to the barges being
concave upward and downward, respectively.

30. In order to measure the impact velocity of the stern of either
barge on the model floor, a velocity transducer was positioned over and con-
nected to the model barges by means of a monofilament line. The velocity
transducer was positioned so that the line connecting it to the model barge
was as close as possible to perpendicular to the top of the barge at the time
of bottom impact. Thus, the output voltage of the velocity transducer corre-
sponded to the velocity component that was perpendicular to the barge top just
prior to bottom impact. Attachment points were provided on the stern corners
of the model barges (Figure 4 and Photo 5). This allowed impact velocity mea-
surements at either the inside or outside corners of either of the connected
model barges.

31. In order to measure tensions in the mooring line systems described
in paragraph 17, strain gaged load links were incorporated into a nonexpanding
monofilament line that connected the spring systems to the barges. These load
links were calibrated prior to installation on the model, and, thus, their

output voltages could be transformed to mooring line tensions. Photos 10

24




and 11 show the SFB installed in the facility for testing with an incident
wvave direction of 90 deg.

32, Wave height measurements made during calibration of the side~
connector test facility were carried out in the same manner as described in
paragraphs 24 and 26 for the functional tests.

33. During the SFB testing, the mooring line tensions, SFB angulari-
ties, connector forces, and stern impact velocities were defined with sampling
rates that varied from 100 to 300 times per second. Thus, for each data chan-
nel (labeling of data channels is defined in the legend of Figure 4) a time
history of its responses to each test condition was defined and plotted. Fig-

ure 13 shows an example of a time history plot of the forces measured in the

4700 —
3900
3100 [~

2300 -

F12. KIPS

700 B~

-100

-900

1700 ! 1 ! 1 { I L L 1 i J
0 10 20 30 ) 50 60 70 80 90 100 oo
TIME. PROTOTYPE SECONDS

Figure 13. Typical time history plot of data channel for
side-connector tests (Test 1, Table 1)
z-direction of connector Fl during the SFB's exposure to 10 sec, 10-ft mono-
chromatic waves from 90 deg (Test 1, Table 1). In addition to plotted time
histories, a data analysis routine was developed that defined the maximum and
minimum value found in each time history and when these values occurred during
a test, When a maximum or minimum value was found in a data channel, all val-

ues in the other data channels being monitored were defined at that same

25




ingtant in time. Figure 14 18 the output data for the analysis of the time-

history shown in Figure 13. A maximum value in the positive z~direction was

found in connector Fl at 7.2 sec into the test run; this was extracted from
the data and printed out along with the corresponding values in all the other
data channels at that same instant in time. The lower portion of Figure 14
shows where a minimum value (maximum negative value) in the z-direction for

connector Fl was found at 28.3 sec into the test.
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PART ITII: SPECTRAL WAVE SIMULATION

Selection of Spectral Shapes

34, Spectral wave tests were conducted with a Tp range of 6 to 14 sec
for Hmo of 2, 4, 6, and 8 ft. This range of wave conditions would provide a
database that would allow (a) selection of an optimum SFB length in terms of
total cost as a function of wave protection received, (b) final mooring line
and anchoring selection, (¢) estimation of bottom-scour potential at the stern
of the SFB, and (d) load determination for the design of barge connectors.

35. Measured shallow-water wave spectra, obtained at a depth of
16.4 ft, were available from Thompson (1980) for Nags Head, N. C. The Nags
Head data could reasonably be used to develop the energy-frequency distribu-
tions needed in the present investigation because of (a) the geographic
proximity of Nags Head and Oregon Inlet, (b) intermediacy of the 16.4-ft depth
relative to the proposed testing depths, and (c) observations that, based on
available measured wave spectra, energy-frequency distributions do not appear

to vary significantly along that portion of the North Carolina Coast.

36. The selection of spectral wave conditions plays a critical role in

studies of this type. Extensive research has been performed in scientific and

engineering communities to quantify a consistent shallow-water spectral form

(Vincent 1982). The basis of this work is derived from similarity principles

between deep- and shallow-water spectral shapes in wave number space

(Kitaigordskii et al. 1975). Comparisons between measured (laboratory and

field) spectral shapes and the theoretical shape have been found to be very
similar (Goda 1974, Thornton 1977, Ou 1980, Iwata 1980, Vincent 1982, and

Jensen 1983). The equilibrium range in the spectrum of wind-generated surface

waves is defined by

E(E) = ag’(2m 47y ({—) oo £
m

E(f) = the energy density at a given frequency f

a = Phillip's equilibrium constant

g = acceleration due to gravity

..............................

«



w(%—) = gpectral shape function dependent on f and fm (peak fre-

quency), the frequency at which the maximum energy density
occurs

o(md) = g nondimensional dispersion function dependent on wy given
by

wy = 2nf(§)1/2 (2)

37. The function ¢(md) in its complete form (Grosskopf and Vincent
1982) is a transcendental equation that can be solved through trial and error
procedures. In deep water the function O(md) approaches 1.0; when wy is

less than 1.0, ¢(md) can be approximated by

2
d

N+

O(wd) ¥ =

and therefore,
1 -2_-3 (f
E(f) 3 agd(2w) °f ¢(§> f > fm (3)

The spectral shape changes from an f_5 to an f-3 in the tail of the energy
density spectrum and, more importantly, becomes a function of the water depth.

38. The forward face of the spectrum is represented by

E(f) = ag (27n) fm exp |1 - (fm> ) (md) f < fm (4)
vhere O'(wd) 18 evaluated from the wy defined at fm . Equation 4 has

been shown to generate very consistent results when compared with field wave
data (Garcia and Jensen 1983, and Jensen 1983).

39, The only unknowns 1involved in the evaluation of the spectral shape
are the peak frequency, Phillips' equilibrium constant, and the total energy
Eo . The peak frequency is given by the design specifications requested by
SAW. The peak frequency will shift toward a lower frequency from deep to

29




shallow water. The mechanisms that cause this change are derived from the
nonlinear transfers of energy, or wave-wave interactions (Hasselmann

1962) . The energy transfers act conservatively, although a portion of the
energy is transferred into the high frequency end of the spectrum and is lost
because of wave breaking (like "white capping"). Phillips' equilibrium con-
stant is related (nondimensionally) to the fetch length, wind speed, and peak
frequency. A wind speed of approximately 40 knots 1is selected as a reasonable
estimate for wind conditions occurring in a storm passing the area. There-
fore, o 1s given as a function of peak wave period, derived from Vincent
(1982) in the following tabulation

f T

m |
1/sec sec a*
0.167 6 0.0166
0.125 8 0.0131
0.100 10 0.0117
0.083 12 0.0100
0.071 14 0.0093

* For wind speeds equal to 40 knots.

40. The remaining unknown Eo (total energy), is related to the sig-
nificant wave height Hmo by the following equation:

oo = 4/E, ®
where
E, = / E(f)df (6)
o

Since the range of Hmo was specified by SAW (of 2, 4, 6, and 8 ft), it
becomes a matter of distributing the energy over the frequency range of the
spectrum (Equations 3 and 4).

41. The theoretical spectrum i3 evaluated for each discrete frequency
band (knowing fm and a ), and then integrated over the range of frequencies

(Equation 6)., The resulting total energy is then scaled according to the

30




total energy obtained from the Hmo desired conditions. That ratio (desired
R-oltheorctical Hno) is reapplied to the spectrum, and the resulting spectrum
is now referenced with respect to the desired Hmo wave conditions for a par-
ticular fm . The derived spectral shape represents the "true'" shape sought
in the model study.

42, During preliminary model testing, problems were encountered as the
peak frequency decreased to 0.083 Hz. The measured spectral shape would not
correspond to the theoretically derived spectral shape (Equations 3 and 4).
From the measured spectra (in 15 ft), the model was "excited" in frequency
bands just above the peak frequency. The energy level was nearly as high as
that observed at fm . Between the two peaks was a significant drop in the
spectral energy as if an energy sink existed somewhere in the wave tank. This
selective removal of energy from discrete frequency bands and the transforma-
tion of the single peaked spectra into two-peaked spectra could not be
explained. Therefore, an alternate method of solution was adopted to control

the excitation and thus produce a single peaked spectrum in shallow water,

43. Two alternate solution techniques could be adopted to model the

long-period wave condition found at Oregon Inlet., The first technique would

assume that swell waves could be approximated by a monochromatic, unidirec-

tional wave form (for example, Hasselmann et al. (1973) and Jensen (1983)). A

wave train with a single frequeney and wave height could be input (linear wave

train) at the deep-water section and, through shoaling and refraction (caused

by convergence of the side walls in the wave tank) effects, a single wave

train would result in shallow water. The second solution technique requires

the specification of some spectral shape that would transform into a distribu-

tion represented by Equations 3 and 4 without adversely exciting the wave tank

producing a double peaked spectrum. The deep-water (at the forcing end where

d = 50 ft) spectral shape is governed by the form given below:

-6
E(f) = xagz(zn)"‘f;sexp 1 - <——> £t (7a)

- xagz(zw)"‘f's £>f (7b)




The constant ) balances out the dimensions on the righthand side of the
equation set so that E(f) 1s given in the form of lengthz-time. The justi-
fication for Equations 7a,b is found through comparisons of the resulting lab-
oratory spectral shapes in shallow water (15 ft) with swell-dominated proto-
type data observed at Nags Head, N, C. (Thompson 1977). Many alternate shapes
were used (varying the powers of f , fm , and the ratio of f/fm ). It was
found that the resulting shallow-water spectral shape derived from Equa-

tions 7a,b reproduced the expected theoretical shape, as well as the prototype

data, more consistently than any other approximated form.

Initialization

44, The actual input conditions to the wave generator are given in deep
water. However, wave spectra must be estimated from shallow-water design con-
ditions. The problem is easily solved because the model study is simulating
conservative processes of wave refraction (constricted wave tank), shoaling
(sloping bottom), and nonlinear transfers of energy (wave-wave interactionms,
although a portion of the energy is lost in the high frequency end of the
spectrum). The spectral shape can be transformed into deep water by employing
the linear wave theory as a basis to compute the individual phase speeds
(dependent on each discrete frequency) and the group celerity (assumed to be
derived from the peak frequency). The generation of deep-water swell spectra
does not pose significant problems since the spectral shape is computed for
deep-water conditions. The deep-water total energy of these tests is con-
trolled by an a priori knowledge of the expected H, in the 15-ft-water

depth, again using linear theory to estimate refraction and shoaling effects.

Comgarisons

45, Comparisons were made between the wave spectra measured in the
model and theoretically derived spectra, for wave conditions in a water depth
of 15 ft. These tests verify that: (a) the given "sea" wave spectra conform
to the assumed shape in a l5-ft-water depth, and (b) the input description of
the "swell" wave spectra collapse into a similar water-depth-dependent spec-
tral shape given in Equations 3 and 4. The test series employing an Hm

0
equal to 6.0 ft is used to demonstrate the consistency of test results.
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46. Figure 15 shows results of the measured and theoretical spectra for
the 6.0-sec peak-period wave test. The energy density is plotted against a
nondimensional frequency based on fm « Unlike the monochromatic tests, the
peak period is not conserved (i.e. remaining constant) from deep water
(d = 50 ft at the wave paddle) to shallow water (d = 15 ft at the gage). The
nonlinear transfers will shift fm to a lower frequency (as shown in Fig-
ure 16). Rather than attempt to control the transfer rate (and the shift in
fm ) from deep to shallow water, it was decided to input the specified fm at
the wave generator and allow for the shift in peak frequency. The maximum
error between the required fm and the measured fm was 5.0 percent (with a
mean error of 2.7 percent). Returning to Figure 15 one notices that the mea-
sured data follow the theoretically derived data quite closely. There is a
small overestimation in the measured data set near the spectral peak and a
strong divergence between E(f) values near f/fm = 2.0 . The reason for
this trend is unknown.

47, The second verification test involves Hmo and Tp conditions of
6.0 ft and 8.0 sec, respectively. As shown in Figure 17, the measured data
nearly replicate theoretical results. Minor oscillations exist in the mea-
sured data above and below the computed spectral shape, but, in general, the
trends are very similar. The last locally generated "sea' wave condition
(Figure 18) 1is for Hmo equal to 5.9 ft, and fm equal to 0.1l Hz
(Tp = 9 gec). As in the three previous cases, the measured E(f) corresponds
to the theoretical spectral shape. There is a small underestimation of the
energy density near the spectral peak, but it is only on the order of
~7.0 percent. There is a lobe of energy at the base of the forward face of
the measured spectra, probably caused by a cross oscillation in the wave chan-
nel or created by the convergence in the sidewalls of the tank. However, the
amount of energy in the lobe is small compared to the energy in the primary
spectra and therefore contamination in the test results from the added energy
packet was insignificant,

48, The final two tests (Figures 19 and 20) are used as examples to
simulate distant swell wave conditions. As previously discussed, the swell
spectral tests are performed using a slightly different procedure. An assumed
deep-water spectral shape is specified as input conditions, and the spectrum
is allowed to transform into a stable shape at the 15-ft water depth. Apply-
ing similarity principles (Kitaigordskii et al. 1975), a theoretical spectral
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Figure 17. Theoretical and measured
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shape can be generated and compared with the measured spectra., Although the
"fine-tuning'" of the measured spectral shape is based on the deep-water ver-
sion, the shallow-water shape must be consistent with the theoretical data
set. Figure 19 represents an Hmo condition equal to 5.1 ft and a Tp con-
dition equal to 12.4 sec. The measured spectral results compare very favor-
ably with the theoretical data set. There appears to be a divergence in the
measured spectral shape for f/fm > 2.5 where the slope is approximately
twice as steep for similar conditions found in the theoretical shape. 1In all
other regions, the measured E(f) is of the same form represented in the the-
oretical spectral shape verifying the consistency in the model results for
spectral conditions in 15-ft water depths. The final test (Figure 20) dis-
plays the theoretical and measured spectral shapes for Hmo and T  wave
conditions of 6.2 ft and 14 sec, respectively. The comparisons between theory
and measured results are not favorable as in previous tests. The reason for
the poor comparison is based principally on the processes occurring in the
wave channel. The input wave spectrum is nearly of the form of a monochroma-
tic wave train (i.e. a spectrum with all of its energy concentrated in a sin-
gle frequency band). As the spectrum propagates into shallow water, an energy
exchange occurs that has been caused by the nonlinear interactions. Since the
spectrum is very narrow banded (relative to all others tested), there will be
a strong decomposition of that shape splitting the energy between the primary
and secondary harmonics. The "spikes" found in the measured spectrum are a
result of these processes, However, the theory employed cannot resolve the
resonant interaction between primary and secondary harmonics; thus, a poor
comparison between measured and theoretical data sets 1s shown. The measured
spectral shape remains nearly unchanged from its input shape (excluding the
secondary harmonics). The theoretical spectral shape found in Figure 18
(closed circles) represents a scaled (via Hmo ), saturated, swell wave condi-
tion in 15-ft-water depths. The measured spectral energy is approximately

1.5 times less than saturated conditions in that particular water depth.
Therefore, the measured data should not reflect the saturated spectral shape,
but remain nearly unchanged from a deep-water condition. Hence, the model
test for the long-period (defined here as swell) spectral wave shapes 1is also

well represented.
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PART IV: TESTS AND RESULTS FOR THE FUNCTIONAL MODEL

Monochromatic Wave Tests

Performance tests

49, Monochromatic performance tests were conducted with the 89,.6-ft SFB

exposed to 2-, 4-, and 6-ft waves for periods from 4 to 14 sec. Specific test

conditions and corresponding values of relative depth (d/L), wave steepness

}

(H/L), relative wave height (H/d), and relative structure length (LSFB/L) are

-~ - -
p e~

presented in Table 2. Typical test views for 6-, 10-, and l4-sec waves are

presented in Photos 12-17, All tests were conducted on a 1V:50H bottom slope

y B

in a water depth of 15.0 ft (measured at the stern of the SFB). Tests were
conducted in a 3.20-ft-wide flume and the model SFB was 2.96-ft wide; conse-
quently, when the SFB was centered between flume walls, a gap of about 1.5 in.
existed between the structure and walls. Initially, it was felt that this gap
(Condition 1; 1.5-in. gaps without absorber) would not have a significant ef-
fect on tests results. However, to quantify the effect of the 1.,5-in. gaps on
experimental results, tests were conducted for Condition 2 (1.5-in. gaps
filled with fibrous wave absorber) and results were compared with those of
Raichlen (1981).

50. Wave attenuation test results are presented in Table 3 for the
three modeling conditions. Data for Conditions 1 and 2 were obtained in the
present investigation; Condition 3 data were extracted from "Experiments with
a Sloping Float Breakwater in Water Waves - Phase I" (Raichlen 1981). Trans-
mission coefficients, Ct » from Table 3 are graphically depicted as functions
of wave period (Plates 1 and 2) and relative structure width (Plate 3). These
data show that

a. Condition 2 generally yielded lower values of Ct than Condi-
tion 1; however, when Ct is plotted as a function of
LSFB/L , the differences are small.
b. Condition 3 Ct's are generally less than either Condition 1

or 2 but some specific values are significantly larger (4-sec,
6-ft and 8-sec, 4-ft waves).

c. There 1is relatively little difference in the maximum Ct for a
given value of LSFB/L .

d. The general quality of experimental data for Conditions 1 and 2
appears to be more consistent than for Condition 3 since there
is less variation of Ct for constant values of LSFB/L .
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51. For direct comparison with Raichlen's data, all mooring force data
reported herein are expressed as the force that would exist on one mooring
line for the case of a single 2l-ft-wide barge. Mooring force test results,
obtained from Force Gage 1, are presented in Table 4 and Plates 4 and 5.
These data show that (a) in general, Condition ! produced the highest mooring
forces followed by Conditions 2 and 3, respectively; and (b) model data ob-
tained for Conditions 1 and 2 appear to be more consistent (force increasing
with increasing wave height) than those obtained for Condition 3 (note in
Table 4, Condition 3 test results for 8-, 10-, and 12-sec wave periods).

Force Gage 2 test results are presented in Table 5. Recalling that Force
Gages 1 and 2 were connected in series and separated by the Teflon pulley, it
would be expected that results are the same for both gages, except for a small
frictional loss at the pulley. Comparisons of Tables 4 and 5 show this expec-
tation is realized.

52, Flow velocity measurements for modeling Conditions 1 and 2 are
shown in Table 6 and Plates 6 and 7. The minimum, average, and maximum values
presented therein were obtained from the maximum velocities observed for each
wave cycle of a specific incident wave condition; thus, depending on wave pe-
riod, flow velocity measurements represent the distribution of 10 to 40 indi-
vidual readings. The large differences (spread) between the minimums and max-
imums are not unexpected when one considers the highly turbulent and unsteady
flow conditions under the SFB.

53. In summary, it is recommended that test results for Condition 1 be
used for design purposes. Discussions with SAW personnel revealed that each
module might be moored separately or in small groups of modules producing a
condition more analogous to Condition 1, which resulted in the largest forces
and transmission coefficients. When one considers the small differences in
maximum Ct's » mooring forces, and velocities, it becomes apparent that any
of the modeling conditions will yield nearly the same design values. For Con-
dition 1 a maximum Ct of 0.75 was observed for l4-sec, 2-ft waves; the maxi-
mum peak mooring force of 24.7 kips was observed at Force Gage 2 during attack
of 12-gec, 6-ft waves; and a maximum peak velocity of 8.0 ft/sec was recorded
during attack of 8- and 10-gec, 6-ft waves.

Survival (storm wave) tests

S4. Limited tests were conducted to aid in determination of the sur-

vival probabilities of the SFB, should it be subjected to storm wave
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conditions. Reviews of historical wave data for Nags Head showed the largest
storm of record occurred in 1966 and had a significant wave height of 15.5 ft
at a significant period of about 10 sec. Therefore, monochromatic tests were
conducted with the 10-sec period for wave heights up through the maximum,
depth-limited breaking wave height (H = 12,7 ft) that could be supported in
the 15-ft depth. Tests conditions are listed in Table 7.

55. Based on previous performance test results, it was decided to con-
sider only Model Condition 1 (1.5-in. gap with no absorber) during the storm
wave tests. Transmitted wave heights, mooring forces, and flow velocities are
presented in Tables 8-10 and Plates 8-10, Maximum transmitted wave heights
and mooring forces of 7.5 ft and 27.0 kips were observed. Both occurred dur-
ing attack of 12,7-ft waves. A maximum flow velocity of 11.0 ft/sec was pro-
duced by the 10-ft wave condition.

56. During both performance and survival tests, large amounts of 1lift
vere observed at the structure's stern (see Photos 18 and 19 for examples of
extreme conditions). Based on model observations, maximum vertical 1lifts were
estimated to be 1 to 2 ft for the 4~ and 6-ft waves and 3 to 4 ft for the
10- to 12.7-ft waves.

Spectral Wave Tests

57. Spectral tests were conducted using 72.3-, 89,6-, and 118.4-ft-long
SFBg anchored in water depths of 13, 15, 18, and 21 ft. The 89.6~ and 118.4-
ft-long structures were tested in all depths; however, the 72.3-ft-long struc-
ture was tested only in the 15-ft depth as its wave-attenuating capabilities
proved inadequate to make it a viable alternative. Breakwaters were anchored
with » 150-ft-long mooring line which had a breaking strength of 230 kips
(with the exception of limited mooring line length effect tests, which are
described in a later section of this part). Peak periods Tp of the spectra
ranged from 6 to 14 sec and the significant wave heights Hmo were 2, 4, 6,
and 8 ft.

Wave attenuation tests

58. Wave attenuation test results are presented in Tables 11-14 and
Plates 11-19, These data show that transmitted wave heights are consistently
lower for the 118.4-ft SFB, and the transmission response of the structures is

strongly dependent on wave period. The transmission coefficient variations
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for a given wave period tend to be slightly larger for the 118.,4-ft SFB., Per-

formance of the structures decreased as the water depth increased.

59. Photos 20-37 show the model breakwaters under attack of 6-sec, 4-
and 6-ft waves and 10- and l4-sec, 4~ and 8-ft waves in the 15-ft depth. It
should be noted that every possible effort was made to take the photos at a
point in the test where the barges were under attack of a wave that approxi-
mated the significant height of the spectrum, However, for a given spectral
condition, photos of the structures were not necessarily taken at exactly the
same point in the wave train; therefore, they are generally illustrative of
the SFB's responses, but exact comparisons of displacement and wave height
should not be attempted.

Mooring force tests

60. Mooring force data are presented in Tables 15-18 and Plates 20-28,
These data show average and, particularly, peak mooring forces are dependent
on wave period, wave height, and water depth. For a constant wave period,
peak mooring forces increased with increasing wave height, and for a constant
wave height (with the exception of the 2-ft height) peak mooring forces gener
ally increased with increasing wave period. The deviation of results for the
2-ft spectra from the trends observed for the 4-, 6-, and 8-ft spectra merits
explanation. For wave heights of 4 ft and greater, the structures are alter-
nately lifted from and dropped back to the seafloor. Thus, mooring forces
result from both a shoreward translation of the SFB and rotation about the
bottom contact point. However, 2-ft waves do not significantly 1lift the
structures, and most of the mooring force results from rotation about the bot-
tom contact point., Based on model observations, rotation appears to increase
as the wave period is increased from 6 to 10 sec and then decrease at the 12-
and l4-sec periods. This trend is approximately reflected in the mooring
force data. For most wave conditions, mooring forces are similar for both SFB
lengths and tend to increase with increasing depth. The l4-sec, 8-ft spectrum
produced the highest peak mooring forces (64,4 and 61.6 kips for the 89,6 and
118.4-ft structures, respectively) of all conditions investigated.
Flow velocity tests

61. Results of flow velocities tests are presented in Tables 19-22 and
Plates 29-32., Examination of these data shows that (a) peak flow velocities

5
ot

are dependent on SFB length, wave height, wave period, and water depth;

(b) for constant structure length and wave period, flow velocities generally

41

A :—‘;iﬁ,{ A\

DN AT WAL NI N O O A G O A N T AN 4 <, L CS AV AR v RV SARVRA TR BRSBTS
b g 0 0 a0 A T VT AT e 0 AT A T, t‘:“' LM A ™ N Tl Al A A A e "N o.o'd Rt ", %' \.o. v



increase with increasing wave height; (c) for constant structure length and _ﬁ
wave height, flow velocities generally increase with increasing wave period; .
and (d) peak flow velocities are generally higher for the 118.4-ft SFB,

Maximum values of 11.0, 12.5, and 15.5 ft/sec were observed for the 72,3-, -
89.6-, and 118.4~ft structures, respectively, "
Mooring line length effect tests 2

62, Limited tests were conducted to investigate effects of increasing
the mooring line length from 150 to 250 ft. Prior to initiation of testing,
it was hypothesized that the longer mooring line, because of its increased £
elasticity, might decrease average and peak mooring forces for the higher wave 3/

heights without adversely affecting wave attenuation at the lower wave

heights. fg
63. Tests were conducted with both monochromatic and spectral waves. v&:

The monochromatic conditions (10-sec, 10-, 12-, 14-, and 15-ft waves) were SE
representative of observed prototype storm conditions, Spectral tests :&
encompassed peak periods of 6 to 14 sec for wave heights of 4 and 8 ft. SFB ?5
lengths of 89.6 and 118.4 ft were investigated. The structures were anchored Qf
in a water depth of 21 ft using 150- and 250-ft-long mooring lines which had a .&E
breaking strength of 230 kips. -
64. Wave attenuation, mooring force, and flow velocity results for the ;ﬁ
monochromatic wave tests are presented in Tables 23-25, respectively. Trans- g%
mitted wave height is presented as a function of incident wave height in kk
Plate 33. Plate 34 depicts peak mooring force as a function of incident wave -
height. These data show that for the 250-ft line, as opposed to the 150-ft ‘i

line, (a) transmitted wave heights are slightly lower; (b) average mooring :
forces are similar, but peak mooring forces are consistently reduced with the ;k
relative reduction being greater for the 118,4~ft SFB; and (c) peak flow hﬂ
velocities tend to be slightly lower. 3§
65. Spectral wave attenuation results are summarized in Table 26 and 'ﬁi
coefficients of transmission are presented as a function of wave period in ’$?
)

Plates 35 and 36, These data show that the wave-attenuating capability of the -
breakwaters is essentially unaffected when the mooring line length is ‘:
increased from 150 to 250 ft. Average and peak mooring forces are listed in :as
Table 27. Peak mooring forces are depicted as a function of wave period for : \
the 89.6- and 118,4-ft structures in Plates 37 and 38, respectively. These . t
data show that in general both average and peak mooring forces are reduced §‘
BeY
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when the mooring line length is increased with the reduction being the most
significant for the peak forces observed at the 8-ft wave heights. Table 28
presents flow velocities observed at the stern of the structures. These
results are generally similar for both mooring line lengths with the 250-ft
line appearing to have a slight advantage for a few specific wave conditions.

Summary of spectral wave test results

66. As evidenced in the preceding sections, coefficients of transmis-
sion are relatively insensitive to wave height (for 2- to 8-ft waves and con-

stant wave period). Therefore, it ig felt that the average coefficient of

transmission Et is representative of SFB performance. Plates 39 and 40

present Et as a function of water depth and wave period. These data show
that the performance of the SFB decreases as the wave period and/or water
depth increases, and the longer SFB performs consistently better than the
shorter structure.

67. Peak mooring force is presented as a function of wave period and
wvater depth in Plates 41-48 for 2-, 4-, 6-, and 8-ft incident wave heights.
These plots show that peak mooring force generally increases with increasing
wvave period and/or water depth, and the largest values occur for l4-sec, 8-ft
waves at the 21-ft depth., It is interesting to note that the largest value
observed (64.4 kips) 1is only 28 percent of the mooring line's breaking
strength.

68. Peak flow velocity is depicted as a function of wave period and
water depth in Plates 49-54 for 4-, 6-, and 8-ft waves. These data show that
peak flow velocities generally increase with increasing wave period and/or
wave height and tend to decrease as the water depth increases. Also, the data
become more narrow banded as the wave height increases; i.e., effects of wave
period are less pronounced for larger wave heights.

69. Based on the data presented herein, it appears that wave attenua-
tion will be at a maximum and peak mooring forces will be at a minimum when
the SFB is moored in 13 ft of water. The purpose of testing the SFB in vari-
able water depths was to define its performance over a complete range of tide.

Nondimensionalized wave
attenuation test results

70. Examination of wave attenuation test results shows that coeffi-
cients of transmission appear to primarily depend on wave period or length,

SFB length, and water depth, 1i.e.,
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Ct = f(LP, LSFB’ d)

‘ The variables Lp s LSFB » and d are defined as the wavelength of the peak
spectral period, length of the SFB, and water depth, respectively. Values of

C,_ and relative SFB length (LSFB/Lp) are given in Tables 29 through 32, and

t
Plates 55 through 58 present Ct as a function of LSFB
depths. These data show that, for the range of SFB lengths investigated, the
SFB/Lp is independent of SFB

length. Therefore, these plots could be used to predict the performance of an

/Lp for constant

value of Ct associated with a given value of L

intermediate SFB length over the range of wave conditions investigated.
71, It should be noted that Plates 55-58 also show that for the range
of conditions tested, relative mass moments of inertia do not significantly

influence SFB performance over the range of lengths investigated. Since the

mass moment of inertia varies with L:FB (approximately), a dependence of Ct

on the relative mass moments of inertia would have necessitated a family of

/Lp .

curves wvhen Ct was plotted as a function of LSFB
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PART V: TESTS AND RESULTS FOR SIDE-CONNECTOR TESTS

Test Conditions

72, The side-connector tests were conducted with the SFB's moored in a
20-ft water depth. The use of the 20-ft mooring depth allowed the side-
connected SFB's to be subject to the following rather severe monochromatic and

spectral wave condition:

Monochromatic Waves

Wave Period Wave Height
sec ft
10 10
10 12,5
10 15
12 10
12 12.5
12 15
14 10
14 12.5
14 15

__Spectral Waves
Period of Peak Energy Wave Height
Density, T H = 4/E*
mo
sec ft

6
8
8
10
10
12
12
14
14

ONONONOONO

* E = total energy of spectrum (defined by
the area under the curve of the spectral
energy density versus frequency plots).

The test program was initiated in order to expose the side-connected SFB to

waves from the four incident wave directions described in Figure 4.
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Monochromatic Wave Tests

73. A total of 20 tests were run with monochromatic waves incident from T}
90 deg (Table 1). For all tests, the barges were ballasted, connected
together, and floated at an angle of 14.5 deg relative to the horizontal with
their sterns resting on the bottom in a 20-ft water depth. Photos 38 and 39

show the model SFB during monochromatic wave attack (90-deg incident wave

direction). 3

74, Tests 1-9 covered the full range of monochromatic waves with all :é
mooring lines attached. Time histories of the output for all but the stern :‘
impact velocity data channel were recorded. The time histories for stern g

impact velocities were only recorded for what were observed to be the most

severe bottom impact conditions. Plates 59-72 are typical examples of the b2

in the connectors, stern impact velocities, and barge motion (angularity time

time histories recorded for all tests. These examples are taken from Test 2, ':

The time histories were then analyzed for maximums and minimums by using the E
g method described in paragraph 33 and Figure 14, Plates 73-86 are the analyses _Q
,g outputs for Test 2. Because of the massive amount of data plots and tabula- Fé
? tions created by these tests, the maximums for the connector forces, mooring 2.
: line tensions, and impact velocities; and range of barge angularities were g
. extracted and are presented in Table 33, #
§ 75. With the possibility of mooring line breakage, concern arose as to %
g the effect this would have on tension in the remaining mooring lines, forces é

history). For this reason, Tests 10-13 were conducted using 15-ft waves with

- .
Y

periods of 12 and 14 sec, as these wave conditions appeared to be the most se- &
vere for the 90-deg wave direction. The results of these tests are summarized i:

in Table 33. During Test 11, the load in connector F2 exceeded its model de- U

. sign load which resulted in a slight deformation in the thin wall portion of :ﬂ
? the connector. This was not found until the end of the day when Tests 10-13 E
;E had been completed. Thus, the offset in the calibration for ccnnector F2, due 3
to it being overloaded, could not be compensated for. For this reason, the ?

S validity of the magnitudes of the forces measured in connector F2 are ques- -
$ tionable for these latter tests, but since the connector was damaged, 1t is ,
; known that the load was quite high (equal to or greater than the -6,854 kips F
: reported in Table 33 for F2Z). ‘K
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76. Pollowing Test 13, the calibrations of connector F2 were corrected
in order to compensate for the offset which occurred during Test l1. By doing
this, and with the assumption that the set was minor enough to not cause non-
linearity in the connector calibrations, some degree of confidence could be
placed in data gathered with commector F2 as long as no additional yielding of
the connector occurred. In an effort to avoid additional connector damage,
the remaining tests were conducted with 10-ft, 10~ and l4-sec monochromatic
waves,

77. A discussion arose during the review of Tests 1-13 as to what
effect, 1f any, the mass weights suspended from the spring systems were having
on the mooring line tension measurements. Depending on the spring constant
and the design of a spring, some magnitude of initial tension needs to be
exceeded before elongation of the spring is initiated. The mass weights were
suspended from the spring system so that when the mooring line tension ex-
ceeded a magnitude of zero, no matter how small the tension, spring elongation
began. This assured that the spring system would respond immediately, but it
failed to take into consideration the inertial effects of the mass weights.

78, 1t was observed in the data from Tests 1-13 that the maximum con-
nector forces coincided with the instant in time when the stern of the barges
impacted on the concrete floor of the test flume. Some discussion arose as to
conservatism in this condition relative to the prototype where the barges
would be in contact with a sand.bottom. Maxwell Cheung and Associates, Inc.
(MCA), provided a theoretical force deflection curve that they felt would be
representative of the barges as they impacted and dug into a prototype sand
bottom,

79. MCA felt that if they had some idea of the natural frequency of the
connected free floating ballasted barges, it would aid them in their analysis
of the side~connector force data.

80, Tests 14-20 (Table 1) were conducted to help answer the questions
discussed in the four previous paragraphs. Tests 14 and 15 were run as con-
trol tests with no modifications in the sterns or spring systems, With cali-
brations for connector F2 being modified because of yielding during Test 11,
these tests provided data for comparison with the data to be gathered with the
modified spring systems and bumpered barge sterns. A summary of the maximum
connector forces, mooring line tensions, impact velocities, and barge angular-

ities measured during Tests 14 and 15 are presented in Table 33.
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" was conducted to look at

81. Test 16, referred to as the "ping test,
the natural frequency of the connected, ballasted, and moored barges. During
Test 16, a small rubber hammer was used to ping barge number 1 along the top
of 1ts bow. The barge was pinged twice on the outside corner, then the
middle, and lastly the inside corner (nearest the connectors). During the
ping test, the barges were connected and floating in the water; all mooring
lines were attached; and the inside and outside stern corners of each barge
were positioned on l/4-in.-diam steel rods. As an example of the data gath-~
ered, Plates 87 and 88 show the response of connector Fl in the z-direction
during the ping test. To aid in the measurement of the frequencies, the
x~axis prototype time scales were expanded for the second pings on the outside
and middle and first ping on the inside corner and are presented on
Plates 89-91, respectively.

82. Prior to Tests 17 and 18 (Table 1), the mass weights were removed
from the model mooring line spring systems and the spring systems were
recalibrated. The calibration curve for the modified spring system was
slightly stiffer than the original spring system, which in turn was slightly
stiffer than the 135-ft length of the 20-in. circumference 2-in-1 braided
nylon line which it was representing (Figure 21). Table 33 shows the maximums
recorded for all the data channels during these tests. Figures 22-27
and 28-33 are the time histories of the mooring line tensions for a portion of
Tests 15 and 18, respectively. Comparison of these plots and the data in
Table 33 shows that removal of the mass weights eliminated the higher frequen-
cies in the mooring line data.

83. Five bumpering materials were developed and tested to see how well
they would represent the force-compression equation provided by MCA (Fig-
ure 34). Up to a load level of 15 1b/in. of model bumper, material C had the
closest fit to the theoretical force-compression curve. Assuming that the
load would not exceed 15 1b/in. in the model, a l-in.-wide strip of bumper
material C was added to the bottom of the sterns of both barges, and Tests 19
and 20 were conducted with the modified spring systems. The softening of the
barge impact on the concrete floor resulted in a significant reduction in the

forces measured in the connectors (Table 33).
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Figure 21. Force-elongation curves for
side-connector tests, model mooring line
spring systems
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Figure 22, Mooring line Tl's tension time history
for Test 15 of side-connector tests
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Figure 23, Mooring line T2's tension time history h
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Figure 25. Mooring line T4's tension time history
for Test 15 of side-connector tests
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Figure 26, Mooring line T5's tension time history
for Test 15 of side-connector tests
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(1ln = 2) of model bumper material
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PART VI: CONCLUSIONS

e ow om o et

84. Based on assumptions, tests, and results reported herein, it is
concluded from the functional tests that:

a. For an 89.6-ft SFB moored in 15 ft of water using a mooring
line length of 150 ft and subjected to monochromatic waves:

(1) Test results from Model Condition 1 (1.5-in. gap with no
absorber beside SFB) should be used for design purpose.

(2) For maximum wave heights of 6 ft in a wave period range of
4 to 14 sec, maximum Ct's » mooring forces, and flow A{j

velocities were 0.75, 1.18 kips/ft of breakwater, and o
8.0 ft/sec, respectively. R

(3) Exposure of the SFB to the maximum possible wave height in
a 15-ft water depth for a 10-sec wave period results in a iy
maximum transmitted wave height of 7.5 ft, a peak mooring A
force of 1.29 kips/ft of breakwater, and an extreme flow
velocity of 11.0 ft/sec.

b. For 89.6- and 118.4~ft SFBs moored in 13, 15, 18, and 21 ft of i”;
water using a mooring line length of 150 ft and subjected to =
spectral waves: ';ﬁ

(1) Transmitted wave heights are consistently lower for the K
118.4-ft SFB, and the transmission response of both struc- L
tures is strongly dependent on wave period. )

(2) Increasing the water depth significantly decreases the N
wave-attenuating capabilities of both structures. et

(3) For most wave conditions, mooring forces are similar for ﬁ;'
both SFB lengths and tend to increase with increasing a¢
depth. oy

(4) The l4-sec, 8-ft spectrum produced the highest peak moor- -
ing forces (3.07 and 2.93 kips/ft of breakwater for the ﬁgﬁ
89.6-ft and 118.4-ft structures, respectively) of all con- :ﬁ{
ditions investigated. $ﬁ

.

(5) Peak flow velocities are generally higher for the longer ¢§t

SFB, and maximum values of 12.5 and 15.5 ft/sec were ob- ;

served for the 89,6~ and 118.4-ft structures, respectively. Ve

c. For the 250-ft mooring line, as opposed to the 150-ft mooring q&k
line: EQ?
(1) For attack of 10-sec, 10- to 15-ft storm waves: af
(a) Transmitted wave heights are slightly lower. il
ey
(b) Average mooring forces are similar and peak mooring b%ﬁ
forces are consistently reduced. Shw
(A X
(c) Peak flow velocitles are slightly lower. *B:
I

(2) For subjection to 6~ to l4-sec, 4- and 8-ft spectral =
waves: o
I::‘:‘
KN
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(a) Wave attenuation is essentially unaffected.

(b) Generally, both average and peak mooring forces are
reduced with the reduction being the most significant
for the peak forces associated with the 8-ft wave
heights.

(c) Peak flow velocities are similar for most wave
conditions; however, the longer mooring line appears
to have a slight advantage for a few specific
conditions.

85. Based on the test conditions, test results, and the test data anal-
ysis carried out and reported on by MCA Engineers, Inc. (MCA 1984), for
Tests 1-20 of the side-connector tests, it is concluded that:

a. The mooring line test data are valid for all tests. The mass
weights in the model mooring line spring systems did not have
an affect on the mean peak mooring line tensions recorded
during Tests 1-15,

-

The connector forces measured during the rigid bottom tests
(Tests 1-15, 17 and 18) are of such a large magnitude that it
does not appear to be economically feasible to design the
connector type used in these tests if the rigid-bottom impact
case is a design requirement.

c. The bumpering, which simulated a soft seafloor condition,
reduced the connector forces to values that would make the con-
nector design a feasible task, but the connector system design
would only be adequate for seafloor conditions equal to or
softer than the condition simulated in the model tests. Since
this seafloor condition cannot be guaranteed for all prototype
site conditions, it would be essential to provide a bumper or
fendering system on the stern of the barges. A fendering sys-
tem had been considered as a method of alleviating structural
loadings in the barges, but it was ruled out as being too
complicated.

d. With the barges being adequately designed to withstand impact
loadings, the connector loads could possibly be reduced through
the incorporation of an absorber in the connector design that
would reduce the impact-induced connector forces. This is a
feasible alternative, but it requires further in-depth study.

e. Since major modifications of the connector design were deemed
essential, it was decided that testing of the existing con-
nector design for other angles of wave attack and with spectral
wave conditions was not needed.
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Wave Conditions and Test Setup for Side-Connector Tests F@&

Monochromatic Waves, 90 deg s

Spring Systems, SFB Stern, .
Modified (M) Rigid (R) 3
Test Wave Mooring Line(s) or or A
No. Period, sec Height, ft Unhooked Unmodified (U). Bumpered (B) N

1 10 10.0 -
2 10 12,5 -
3 10 15.0 -
4
S

12 10.0 -
12 12,5 -

ccacaa
rTOWAOX

6 12 15.0
7 14 10.0
8 14 12.5 -~
9 14 15.0
0 14 15.0

cacaa
IR
o

11 12 15.0 T6
12 12 15.0 T4 & T6
13 14 15.0 T4 & T6
14 10 10.0 -
15 14 10.0 -~

ccacac
™™o n

16 Ping tests -
17 10 10.0 -
18 14 10.0 -
19 10 10.0 -~
20 14 10.0 -

j< Jic Jic S P ]
W
s




Characteristics of Monochromatic Test Waves; d = 15,00 ft

T, sec H, ft d/L
4.0 2.0 0.2107
4.0 4,0 0.2107
4.0 6.0 0.2107
6.0 2,0 0.1244
6.0 4.0 0.1244
6.0 6.0 0.1244
8.0 2.0 0.0896
8.0 4.0 0.0896
8.0 6.0 0.0896
10.0 2,0 0.0705
10,0 4,0 0.0705
10.0 6.0 0.0705
12,0 2,0 0.0581
12,0 4,0 0.0581
12.0 6.0 0.0581

14.0 2.0 0.0495
14.0 4.0 0.0495
14.0 6.0 0.0495

H/L

0.0281
0.0562
0.0843

0.0166
0.0332
0.0498

0.0119
0.0239
0.0358

0.0094
0.0188
0.0282

0.0077
0.0155
0.0232

0.0066
0.0132
0.0198

H/d

0.133
0.267
0.400

0.133
0.267
0.400

0.133
0.267
0.400

0.133
0.267
0.400

0.133
0.267
0.400

0.133
0.267
0.400

=

SFB

1.237
1,237
1.237

0.731
0.731
0.731

0.526
0.526
0.526

0.414
0.414
0.414

0.341
0.341
0.341

0.291
0.291
0.291
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Table 3
Wave-Attenuating Capabilities of 89,6-ft SFB;

Monochromatic Waves; d = 15,0 ft

Condition 1 “Condition 2 Condition 3
—incident Vave H_, £t C H_, ft C H, ft C
T, sec H, ft t’ t t’ t t’ t
4.0 2.0 0.50 0.25 0.45 0.23 0.25 0.13
4.0 4.0 1,30 0.33 0.60 0.15 0.95 0.24
4,0 6.0 1.55 0.26 0.80 0.13 2.30 0.38
6.0 2.0 0.40 0.20 0.45 0.23 0.35 0.18
6.0 4.0 1,05 0.26 0.80 0.20 1.00 0.25
6.0 6.0 2,20 0.37 1.80 0.30 1.30 0.22
8.0 2.0 0.65 0.33 0.50 0.25 0.30 0.15
8.0 4.0 1.40 0.35 1.15 0.29 1.50 0.38
8.0 6.0 2.65 0.44 2.40 0.40 2.20 0.37
10.0 2,0 1,25 0.63 1.10 0.55 0.70 0.35
10.0 4,0 2,15 0.54 1.90 0.48 1.45 0.36
10.0 6.0 3.25 0.54 3.10 0.52 2.80 0.47
12.0 2.0 1.35 0.68 1.40 0.70 1.25 0.63
12.0 4.0 2,70 0.68 2,40 0.60 1.85 0.46
12.0 6.0 4,05 0.68 3.55 0.59 2,90 0.48
14,0 2.0 1.50 0.75 1.35 0.68 1.30 0.65
14.0 4,0 2.50 0.63 2.30 0.58 2.25 0.56
14.0 6,0 3.20 0.53 3.20 0.53 3.60 0.60

NOTES: Condition 1 tests were conducted with a 1.5-in. gap between the SFB's
edge and the flume walls,

Condition 2 was the same as Condition 1 except the 1.5-in. gap was
filled with a fibrous wave absorber,

Condition 3 tests were conducted with a 0.25-in. gap between the SFB's
edge and the flume walls (Raichlen 1981),
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Table 4 W
; Average and Peak Mooring Forces Observed at Gage 1; 89.6-ft SFB; ::;,:
‘. AELY
Monochromatic Waves; d = 15.0 ft "-:'.‘:
Ra'r
- Mooring Force, kips/21-ft Barge Width ':‘,l;
__Incident Wave Condition 1 Condition 2 Condition 3 ,c’,f',;'
T, sec H, ft Average Peak Average Peak Average Peak ‘::;”s
2 U ¢
| 4.0 2.0 1.3 1.5 1.4 1.6 * 2.2 e
’ 4.0 4.0 2.2 2.3 4.8 5.2 * 4.8 Ll
4,0 6.0 4,3 5.0 5.3 5.9 * 3.0
| bt
)
6.0 2.0 3.3 3.7 1.9 2.6 * 5.8 ".:c
} 6.0 4.0 12.9 13.9 12.0 12.4 4.8 5.4 ;..;:{
6.0 6.0 12,9 14.4 11.1 11 3.0 8.6 f;.'n:
LA
8.0 2.0 2.5 14,2 12.8 13.6 8.0 10.0 ot
8.0 4.0 17.2 17.4 15.8 16,1 8.0 8.8 ..'::.7
8.0 6.0 20.2 20.7 16.4 16.9 4.0 15.2 s
e
10.0 2.0 16.7 17.4 12.4 13.1 * 13.8 ot
10.0 4.0 20.6 21.3 19.4 19.9 11.6 12.0 SN
10.0 6.0 20.8 22.9 18.9 20.2 N 13.6 .
9k t.
)
10.0 2.0 12.8 13.8 5.0 6.1 * 11.8 R
12,0 4,0 20.0 21.3 19.2 20.5 * 15.2 “::;:
12.0 6.0 21.2 22 20.3 21.3 10.0 13.6 :’,5:!
L2530
14,0 2.0 8.1 8.2 6.2 6.3 * 6.8 Y
14.0 4,0 20,7 21.0 20,7 21,2 * 16.8 ; )
14,0 6.0 21.8 22,8 20.5 21,0 14,2 20.4 )
.' )
oy
e
m
fh
o
.:‘:}
AW
‘! !
Lt
o
NOTES: Condition 1 tests were conducted with a 1.5-in. gap between the SFB's an
edge and the flume walls. “‘
Condition 2 was the same as Condition 1 except the l.5-in. gap was " '.E'
filled with a fibrous wave absorber. ’..o:l
"y
Condition 3 tests were conducted with a 0.25-in. gap between the SFB's . .:
edge and the flume walls (Raichlen 1981). .:::.g
* No value reported.
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Table 5 ,:;;_f

Average and Peak Mooring Forces Observed at Gage 2; 89.6-ft SFB; E‘:A‘,
Monochromatic Waves; d = 15,0 ft :g',_'e:

Mooring Force, kips/21-ft Barge Width Y

___Incident Wave Condition 1 Condition 2 e
T, sec H, ft Average Peak Average Peak :,";
4,0 2.0 1.4 1.7 1.5 1.7 :.‘
4.0 4,0 2.3 2.5 5.1 5.5 ik
4.0 6.0 4.6 5.4 5.5 602 V’Q
s

6.0 2.0 3.5 3.9 2.3 3.0 )
6.0 4.0 13.8 14.8 12.6 13.0 o
6.0 6.0 13.4 15.0 11.7 12.3 )
8.0 2.0 12,9 14,6 13.5 14,2 -
8.0 4.0 19.0 19.5 16.5 16.8 W23
8.0 6.0 21.3 21.8 16.8 17.4 it
!

]

10.0 2.0 17.8 18.6 12,9 13.6 3{:'
10.0 4.0 22.1 22.8 20.2 20.7 .
10.0 6.0 22,1 24,4 19.6 21,0 v
e

12.0 2.0 13.7 14.6 5.2 6.3 I
12.0 4,0 21.5 23.0 19.9 21.3 u"t::
12.0 6.0 22.7 24.7 21.0 22.1 ::;:-\
14.0 2.0 8.7 8.8 6.4 6.5 o
14.0 4.0 22.1 22.5 21.3 21.8 :::,:1
14.0 6.0 22.8 24,0 21,4 21.9 :v.‘:
a0

atly.

Lo

Uy

iy

o

N

|.“‘|

b 'I

PR

W

i'.gs

e

|“

$'.:

NOTES: Condition | tests were conducted with a 1,5-in. gap between the SFB's : ":
edge and the flume walls. “5
Condition 2 was the same as Condition 1 except the l.5-in. gap was '.':

filled with a fibrous wave absorber.
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Table 6
Peak Flow Velocities Observed at Stern of SFB; 89.6-ft SFB;

Monochromatic Waves; d = 15.0 ft

Peak Flow Velocity, ft/sec
Incident Wave Condition 1 Condition 2
T, sec H, ft Minimum Average Maximum Minimum Average Maximum

1.6
2.6

oo oo oo oo oo oo
. o o o
P . o
o o . o
. o . o
P )
. . . e
. o . .

. .
o o
* o
. o
. .
. o
OO0 VMO Vo OO wno
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. »

QU OV OO Owm Ownm OowWwm
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WO O oWV NS e W
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Qwm OO0 Ow wvut LD OO0

e e N e
oy =00 00O WOV~ & &

e o
e o
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Condition 1 tests were conducted with a 1.5-in, gap between the SFB's
edge and the flume walls,

Condition 2 was the same as Condition 1 except the 1.5-in, gap was
filled with a fibrous wave absorber.

Table 7
Characteristics of Monochromatic Storm Waves;

d = 15.0 fe; T = 10,0 sec*

H/L

0.0094
0.0188
0.0282
0.0376
0.0470
0.0517
0.0564
0.0588
0.0597

* = . =
d/L 0.0705; LSFB/L 0.414,

AIOOA0 0 b W, N Y \ N
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Table 8

Wave-Attenuating Capabilities of 89.6-ft SFB;
Monochromatic Storm Waves;
d = 15,0 ft; T = 10 sec
(Survival Tests)
H ft Cc
H, ft t’ t
2.0 1.25 0.63
4.0 2.15 0.54
6.0 3.25 0.54
8.0 4,20 0.53
10.0 6.15 0.62
11.0 6.60 0.60
12.0 7.10 0.59
12.5 7.40 0.59
12,7 7.50 0.59
Table 9
Average and Peak Mocring Forces; Monochromatic Storm Waves;
89.6-ft SFB; d = 15.0 ft; T = 10 sec
(Survival Tests)
Mooring Force, kips/21-ft Barge Width
Gage 1 Gage 2

H, ft Average Peak Average Peak

2.0 16,7 17.4 17.8 18.6
4.0 20.6 21.3 22,1 22.8
6.0 20.8 22.9 22.1 24,4
8.0 19.8 22.2 20,4 22,7
10.0 17.9 21.0 18.4 21.9
11.0 18.3 22,0 18.7 22.9
12.0 17.4 23,9 18.5 24,6
12.5 17.6 26.0 17.9 27.0
12.7 17.8 26.3 18,3 27.0




L

Table 10
Peak Flow Velocities Observed at Stern of SFB;
Monochromatic Storm Waves:; 89.6 ft SFB;
d = 15,0 ft; T = 10 sec
(Survival Tests)

Peak Flow Velocity, ft/sec

H, ft Minimum Average Maximum
4.0 2.5 3.9 5.0
6.0 4.0 6.2 8.0
8.0 6.0 8.1 9.5
10.0 7.0 9.0 11.0
11,0 7.0 8.9 10.5
12,0 7.0 9.0 10.5
12.5 6.5 8.4 10.0
12.7 6.5 8.4 9.5

Table 11
Wave Attenuation Test Results; Spectral Waves; 4 = 13.0 ft

Transmitted Wave Heights and Coefficients
of Transmission for Indicated SFB Length

Incident Spectrum 89.6 ft 118.4 ft
T , sec Hmo’ ft Ht’ ft Ct Ht’ ft Ct

6.0 2.0 0.50 0.25 0.30 0.15
6.0 4.0 1.05 0.26 0.75 0.19
6.0 6.0 2.10 0.35 1.75 0.29
8.0 2.0 0.70 0.35 0.45 0.23
8.0 4.0 1.45 0.36 1.10 0.28
8.0 6.0 2,75 0.46 2.25 0.38
8.0 8.0 3.90 0.49 3.45 0.43
10.0 2.0 0.95 0.48 0.65 0.33
10.0 4,0 1.90 0.48 1.40 0.35
10.0 6.0 3.15 0.53 2.50 0.42
10.0 8.0 4,65 0.58 . 3.90 0.49
12,0 2.0 1.25 0.63 0.80 0.40
12.0 4.0 2,45 0.61 1.75 0.44
12,0 6.0 3.65 0.61 2.95 0.49
12.0 8.0 4.95 0.62 4,30 0.54
14.0 2.0 1.45 0.73 1.15 0.58
14,0 4.0 2.55 0.64 2.05 0.51
14.0 6.0 3.90 0,65 3.30 0.55
14,0 8.0 5.20 0.65 4.80 0.60




Table 12
Wave Attenuation Test Results; Spectral Waves; d = 15,0 ft

Transmitted Wave Heights and Coefficients of
Transmission for Indicated SFB Length

_Incident Spectrum 72.3 ft 89.6 ft 118,4 ft
T , sec Hmo, ft Ht, ft Ct Ht, ft Ct Ht’ ft C
6.0 2.0 0.85 0.43 0.55 0.28 0.40 0.20
6.0 4.0 1.65 0.41 1.15 0.29 0.85 0.21
6.0 6.0 2.65 0.44 2.20 0.37 1.90 0.32
8.0 2.0 1.10 0.55 0.80 0.40 0.55 0.28
8.0 4.0 2.05 0.51 1.60 0.40 1.15 0.29
8.0 6.0 3.35 0.56 2,90 0.48 2,15 0.36
8.0 8.0 4,85 0.61 4,25 0.53 3.50 0.44
10.0 2,0 1.30 0.65 1.10 0.55 0.80 0.40
10.0 4.0 2.45 0.61 2.10 0.53 1.55 0.39
10.0 6.0 3.65 0.61 3.20 0.53 2.55 0.43
i0.0 8.0 5.45 0.68 4.80 0.60 4,05 0.51
1.25 0.63
1.95 0.49
3.25 0.54
4.55 0.57

1.40 0.70
2.35 0.59
3.55 0.59

5.35 0.67




Wave Attenuation Test Results; Spectral Waves; d = 18,0 ft

Transmitted Wave Heights and Coefficients
of Transmission for Indicated SFB Length

Incident Spectrum

[=NeNoNo]

(o N No i)

3.90

0.90
1.70
2.90
4,60

1.40
2.45
3.85
5.35

1.60
2.85
4,25
5.85

0.70
0.61
0.64
0.67

0.80
0.71
0.71
0.73

e

0K
l“'é’

K
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Table 14 x
Wave Attenuation Test Results; Spectral Waves; 4 = 21.0 ft ﬁ
Transmitted Wave Heights and Coefficients -
of Transmission for Indicated SFB Length o
Incident Spectrum 89.6 ft 118.4 ft W
T , sec B, ft H_, ft c, H, ft C, %
6.0 2.0 0.75 0.38 0.55 0.28 >
6.0 4.0 1.50 0.38 1.05 0.26
6.0 6.0 2.60 0.43 1.75 0.29 "
NN
8.0 2.0 1.15 0.58 0.80 0.40 £
8.0 4.0 2.15 0.54 1,55 0.39 i
8.0 6.0 3.35 0.56 2.50 0.42
8.0 8.0 5.20 0.65 4,20 0.53
10.0 2.0 1.40 0.70 1.10 0.55 i
10.0 4.0 2.60 0.65 1.95 0.49 N
10.0 6.0 3.90 0.65 3.10 0052 ’:‘t
10.0 8.0 5.70 0.71 4.90 0.61 !
12,0 2.0 1.75 0.88 1,50 0.75 -
12.0 4.0 3.50 0.88 2.90 0.73 hery?
12,0 6.0 4.75 0.79 4.05 0.68 it
12,0 8.0 6.55 0.82 5.55 0.69 D
"fef
14.0 2.0 1.80 0.90 1.70 0.85 0
14,0 4.0 3.60 0.90 3.15 0.79 o
14,0 6.0 5.20 0.87 4.50 0.75 oy
14,0 8.0 6.90 0.86 6.00 0.75 b
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Table 15 .

Average and Peak Mooring Forces; Spectral Waves; d = 13.0 ft 7}ﬂ

Average and Peak Mooring Forces, kips/21-ft 2

Incident Spectrum Barge Width, for Indicated SFB Length v

= 89.6 ft 118.4 ft t
T , sec H , ft - e ‘.

P mo Average Peak Average Peak o
6.0 2.0 4.1 9.5 1.2 2.5
6.0 4.0 10.9 15.3 7.5 11.0
6.0 6.0 9.4 16.5 6.7 16,2 5
8.0 2.0 9.9 14.3 1.6 3.2 e
8.0 4.0 13.0 16.9 11.5 15.7 e,
8.0 6.0 12,0 21.5 10,2 19.7 di?
8.0 8.0 13.2 27.9 12,9 22.3 ot

10.0 2.0 7.7 15.8 2.5 7.2 R
10.0 4,0 16,2 20.9 12.9 17.7 Ky
10.0 6.0 15.6 27.8 14.0 22.6 SQ{
10.0 8.0 15.6 42,4 15.6 38.1 Sﬁf
A
12,0 2.0 10.8 19.1 9.7 16.3 b
12.0 400 19.8 23.6 16.9 20.3 ‘I:,"‘
12.0 6.0 18.3 29.6 18.3 25.2 e
12.0 8.0 16.9 34,2 16.5 30.4 e
bty et
14.0 2.0 13.5 18.0 11.4 14.5 i
14.0 4.0 19.9 22.9 19,5 23.5 »
14.0 6.0 17.9 32.3 17.8 35.9 i
14.0 8.0 16.3 46.4 17.3 44,6 )
L
e
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N Table 16
Average and Peak Mooring Forces; Spectral Waves; d = 15.0 ft

Average and Peak Mooring Forces, kips/21-ft
Barge Width, for Indicated SFB Length

Incident Spectrum

T sec " T 72.3 ft 89.6 ft 118.4 f¢t
p’ mo’ Average Peak Average Peak Average Peak
6.0 2.0 10.0 14.4 3.7 7.5 2,7 5.4
6.0 4,0 13.5 18.8 12.5 17.3 11,5 15.1
6.0 6.0 15.0 21.3 12.7 19.4 11.4 16.2
8.0 2.0 12,9 17.2 11.8 16.4 9.4 13.9
8.0 4.0 15.6 22.9 15.3 19.4 13.8 17.0
8.0 6.0 17.0 27.2 14.8 21.7 14,0 19.3
8.0 8.0 18.0 39.6 16,2 27.9 15.9 24,6
10.0 2.0 12.5 18.1 10.0 17.8 10.1 15.5
10.0 4.0 16.4 24,7 17.3 26.0 15.6 19.7
10.0 6.0 17.8 34.4 17.6 28.3 16,2 22.2
10.0 8.0 19,2 44,3 19.1 43.3 19.0 41.7
12.0 2.0 8.6 18.3 11.8 19.9 14,7 18.8
12,0 4.0 17.1 27.7 19.8 24,7 18.3 22,8
12.0 6.0 19.8 43,0 20.8 34.8 19.9 27.9
12.0 8.0 20,3 47,2 19.3 37.1 19.3 45,2
14.0 2.0 15.0 18.6 9.7 19.8 15.2 19.5
14.0 4.0 18.6 27.5 20.4 24,5 19.8 23,6
14.0 6.0 20.6 34,7 21.3 32.4 20.0 28.3
14.0 8.0 20.9 54,6 18.9 56.0 21,1 52.0
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Table 17
Average and Peak Mooring Forces; Spectral Waves; d = 18,0 ft
Average and Peak Mooring Forces, kips/21-ft
Incident Spectrum Barge Width, for Indicated SFB Length
89.6 ft 118.4 ft

T , sec H , ft

P mo Average Peak Average Peak
6.0 2.0 4,7 14.6 2.2 6.0
6.0 4.0 16.6 22,6 15.1 19.5
6.0 6.0 16.4 25.4 15.4 20.8
8.0 2.0 14.9 20.0 8.8 13.6
8.0 4.0 18.9 26,0 17.7 22,0
8.0 6.0 19.8 30.3 19.0 28.1
8.0 8.0 20.8 37.3 20.0 34,0
10.0 2.0 9.1 19.9 10,5 17.4
10.0 4,0 20.7 28.3 20,1 24,7
10.0 6.0 24.0 34.5 20.4 28.4
10.0 8.0 23.3 49.1 21,9 44,3
12.0 2.0 4.6 10.8 13.0 21,0
12,0 4,0 21,7 31.0 24,4 29,1
12,0 6.0 23.9 39.0 26,1 36.1
12.0 8.0 26.4 54,5 26.3 51.2
14.0 2.0 2,2 3.5 2,7 7.3
14,0 4.0 23.0 30.4 25,0 32.0
14,0 6.0 25.5 41,7 27.7 42,6
14,0 8.0 24,7 61.4 29,2 59.5




Table 18

Average and Peak Mooring Forces; Spectral Waves; d = 21.0 ft

Average and Peak Mooring Forces, kips/21-ft
Barge Width, for Indicated SFB Length

__Incident Spectrum 89.6 ft 118.4 ft
T , sec H , ft
P mo Average Peak Average Peak
6.0 2.0 9.5 14.0 1.5 5.5
6.0 4.0 17.1 23.1 19.3 21.8
6.0 6.0 18.3 26.4 18.9 23.7
8.0 2.0 12.6 19.5 10,5 16.1
8.0 4.0 19.4 27.2 21.4 26.5
8.0 6.0 21.4 33.1 22.5 38.0
8.0 8.0 21,6 42.9 25.3 43.5
10,0 2.0 6.3 14,8 10.3 17.2
10.0 4.0 21,2 30.3 23.8 30.5
10.0 6.0 21.4 35.5 24,6 36.4
10.0 8.0 23.2 56.7 25.6 47.0
12.0 2.0 3.9 7.9 9.2 16.6
12.0 4.0 22.0 31.0 29.0 35.5
12.0 6.0 24.7 43.2 31.2 42.3
12,0 8.0 25,0 60.1 31.4 51.9
14.0 2,0 0.8 1.7 3.6 6.9
14.0 4,0 21.9 33.0 28.5 35.9
14.0 6.0 24.9 44.3 31.4 47.9
14.0 8.0 27.3 64.4 32.6 61.6
Table 19

Peak Flow Velocities Observed at Stern of SFB; Spectral Waves; d = 13,0 ft

Incident Spectrum

T~; sec H ,

P mo
6.0 4.0
6.0 6.0
8.0 4.0
8.0 6.0
8.0 8.0
10.0 4.0
10.0 6.0
10.0 8.0
12.0 4.0
12,0 6.0
12,0 8.0
14.0 4.0
14,0 6.0
14.0 8.0

Peak Flow Velocity, ft/sec, for

Indicated SFB Length

89.6 ft
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Table 20 o
Peak Flow Velocities Observed at Stern of SFB; Spectral Waves; d = 15.0 ft

Peak Flow Velocity, ft/sec, for
Indicated SFB Length
89.6 ft 118.4 ft K

__Incident Spectrum
T , sec H , ft
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Table 21
Peak Flow Velocities Observed at Stern of SFB; Spectral Waves; d = 18.0 ft

Peak Flow Velocity, ft/sec, for
Indicated SFB Length
89.6 ft 118.4 ft B,

Incident Spectrum

T , sec
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Table 22

Peak Flow Velocities Observed at Stern of SFB; Spectral Waves; d = 21,0 ft

Incident Spectrum

Tf, sec ft

Peak Flow Velocity, ft/sec, for
Indicated SFB Length
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Table 23

Mooring Line Length-Effect Tests; Monochromatic Wave Attenuation

Results; d = 21,0 ft; T = 10.0 sec

Transmitted Wave Heights and Coefficients
of Transmission for Indicated Mooring

Line Leggsh

150.0 f¢
Incident Wave W, ft C

Height, ft t t

89.6-ft SFB

10.0 8.05 0.81
12,0 9.40 0.78
14.0 11.30 0.81
15.0 11.60 0.77

10.0 5.50 0.55
12,0 7.35 0.61
14,0 9.40 0.67
15.0 10.45 0.70

250.0 f¢e

H ft

t’

7.00
8.70
11.00
11.70

5.35
6.80
9.00
10.05

0.70
0.73
0.79
0.78
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Table 24 -

LR

Mooring Line Length-Effect Tests; Average and Peak Mooring Forces; b,
Monochromatic Waves; d = 21,0 ft; T = 10.0 sec "'

Average and Peak Mooring Forces, kips/21-ft Barge :tf?._

Width for Indicated Mooring Line Length :ff‘

Incident Wave 150.0 ft 250.0 ft ;:)é.
Height, ft Average Peak Average Peak “.:*.
89.6-ft SFB s

10.0 30.1 37.2 29.9 31.7 W
12.0 28.8 35.8 27.9 33.1 ot
14.0 23.7 35.9 24,1 32.1 o
15.0 21.0 36.7 23.9 34.8 it
y, 1

118.4-ft SFB ’

10.0 37.5 41,1 31.6 33.3 KN
12.0 36.0 38.6 32.2 34.1 e
14.0 32.8 40.1 31.1 33.3 s,
15.0 31.1 40.4 30.2 34.0 0
f;‘ll'v

sy
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Table 25 MK

€% ¢

Mooring Line Length-Effect Tests; Peak Flow Velocities g}'}
Observed at Stern of SFB; Monochromatic Waves; if!‘::‘

d =21,0 ft; T = 10,0 sec .

o

o

Peak Flow Velocity, ft/sec, for ::0::‘

Incident Wave Indicated Mooring Line Length !:o:*
Height, ft 150.0 ft 250.0 ft o
89.6-ft SFB °

2Z.07It orfb s

10.0 10.5 9.5 D
12.0 11.0 11.0 i
14,0 12.0 11.5 L
15.0 11.5 11.5 n
118.4-ft SFB »“

10.0 11,0 11.0 o
12,0 11.0 10.5 R
14.0 12.0 11.5 oy
15.0 12.0 11.0 Ny
o
v
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Table 26 KN

DS

Mooring Line Length-Effect Tests; Spectral Wave ::f::

Attenuation Results; d = 21.0 ft ;if:‘.

Transmitted Wave Heights and Coefficients g;’a.

i of Transmission for Indicated Mooring Line ’:
| Length ::
: Incident Spectrum 150.0 ft 250.0 ft s
i T , sec Hmo’ ft Ht, ft Ct Ht’ ft Ct el
| 89.6-ft SFB e
M)

6.0 4.0 1.50 0.38 1.55 0.39 o

8.0 4,0 2,15 0.54 2,10 0.53 o

10.0 4.0 2.60 0.65 2.60 0.65 B

12.0 4.0 3.50 0.88 3.45 0.86 o

14.0 4.0 3.60 0.90 3.55 0.89 o

8.0 8.0 5.20 0.65 5.15 0.64 N

10.0 8.0 5.70 0.71 5.80 0.73 W

12.0 8.0 6.55 0.82 6.50 0.81 e

14.0 8.0 6.90 0.86 6.65 0.83 Ol

aly,

118.4-ft SFB o

6.0 4.0 1.05 0.26 1.05 0.26 ol

8.0 4.0 1.55 0.39 1,45 0.36 e

10.0 4,0 1.95 0.49 1.90 0.48 AR

12.0 4,0 2.90 0.73 2.85 0.71 .

14.0 4.0 3.15 0.79 3.10 0.78 o

8.0 8.0 4,20 0.53 4.05 0.51 N

10.0 8.0 4.90 0.61 4.80 0.60 wait

12.0 8.0 5.55 0.69 5.65 0.71 L

14.0 8.0 6.00 0.75 6.00 0.75 S




Table 27
Mooring Line Length-Effect Tests; Average and Peak

Mooring Forces; Spectral Waves; d = 21,0 ft

Average and Peak Mooring Forces, kips/21-ft
Barge Width, for Indicated Mooring Line Length

Incident Spectrum

T sec B, ft 150.0 fe 250.0 ft
P mo Average Peak Average Peak
89.6-ft SFB
6.0 4,0 17.1 23.1 17.9 22,9
8.0 4.0 19.4 27.2 19.4 25.3
10.0 4.0 21,2 30.3 20.3 25,2
12.0 4,0 22.0 31.0 20.8 28.9
14.0 4.0 21.9 33.0 21.2 29.3
8.0 8.0 21.6 42.9 20.6 36.1
10.0 8.0 23.2 56.7 20.6 43.5
12.0 8.0 25,0 60.1 22.9 47,2
14.0 8.0 27.3 64.4 23.8 56.0
118.4~-ft SFB
6.0 4.0 19.3 21.8 16.8 19.2
8.0 4.0 21.4 26.5 19.5 24,6
10.0 4.0 23.8 30.5 20.4 25.6
12.0 4,0 29.0 35.5 24,5 29.6
14,0 4.0 28.5 35.9 24.0 28.4
8.0 8.0 25.3 43,5 22.0 29.7
10.0 8.0 25.6 47.0 23.6 36.6
12.0 8.0 31.4 51.9 27.3 41.4
14.0 8.0 32.6 61.6 25,5 52.0
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Table 28
Mooring Line Length-Effect Tests; Peak Flow Velocities Observed

at Stern of SFB; Spectral Waves; d = 21,0 ft

Peak Flow Velocity, ft/sec, for

Incident Spectrum Indicated Mooring Line Lenggh

TD, sec H , ft

_ mo 150.0 ft 250,0 ft
89.6-ft SFB
6.0 4,0 4.5 4.0
8.0 4.0 6.0 6.0
10.0 4.0 5.5 5.0
12,0 4.0 6.0 6.0
14.0 4,0 6.0 4.5
8.0 8.0 10.5 9.5
10.0 8.0 9.0 10.0
12,0 8.0 10.0 10.0
14.0 8.0 11.0 9.5
118,4-ft SFB
6.0 4.0 4,0 3.5
8.0 4,0 5.0 5.0
10.0 4.9 7.0 6.0
12.0 4,0 10.0 8.5
14.0 4,0 8.5 9.0
8.0 8.0 11.0 10.0
10.0 8.0 11.5 10.5
12,0 8.0 13,5 11.5
14.0 8.0 13.5 12.0
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Table 29
Coefficients of Transmigsion and Relative SFB Lengths;

Spectral Waves; d = 13,0 ft

Values of Ct and LSFB/Lp
for Indicated SFB Length

___Incident Spectrum 89.6 ft 118.4 ft
Ty sec Ho? £t € Lsrp’ L € Lsrs’ )
6.0 2,0 0.25 0.79 0.15 1,04
‘ 6.0 4.0 0.26 0.79 0.19 1.04
i 6.0 6.0 0.35 0.79 0.29 1.04
!
; 8.0 2.0 0.35 0.57 0.23 0.75
i 8.0 4,0 0.36 0.57 0.28 0.75
‘ 8.0 6.0 0.46 0.57 0.38 0.75
f 8.0 8.0 0.49 0.57 0.43 0.75
10.0 2.0 0.48 0.45 0.33 0.59
10.0 4,0 0.48 0.45 0.35 0.59
10.0 6.0 0.53 0.45 0.42 0.59
10.0 8.0 0.58 0.45 0.49 0.59
12.0 2.0 0.63 0.37 0.40 0.49
12.0 4,0 0.61 0.37 0.44 0.49
12,0 6.0 0.61 0.37 0.49 0.49
12,0 8.0 0.62 0.37 0.54 0.49
14.0 2.0 0.73 0.32 0.58 0.42
14.0 4,0 0.64 0.32 0.51 0.42
14,0 6.0 0.65 0.32 0.55 0.42
14.0 8.0 0.65 0.32 0.60 0.42




Table 30
Coefficients of Transmission and Relative SFB Lengths;

Spectral Waves; d = 15,0 ft

Values of Ct and L /Lp for Indicated SFB Length

SFB
Incident Spectrum 72.3 ft 89.6 ft 118,4 ft
Tp’ sec Hmo’ fe Ct LSFB/Lp g gFB /% g LSFB Lp
2.0 0.43 0.60 0.28 0.74 0.20 0.98
4.0 0.41 0.60 0.29 0.74 0.21 0.98
6.0 0.44 0.60 0.37 0.74 0.32 0.98
2.0 0.55 0.43 0.40 0.54 0.28 0.71
4,0 0.51 0.43 0.40 0.54 0.29 0.71
6.0 0.56 0.43 0.48 0.54 0.36 0.71
8.0 0.61 0.43 0,53 0.5¢4 0.44 0.71
2.0 0.65 0.34 0.55 0.42 0.40 0.56
4,0 0.61 0.34 0.53 0.42 0.39 0.56
6.0 0.61 0.34 0.53 0.42 0.43 0.56
8.0 0.68 0.34 0.60 0.42 0.51 0.56
2,0 0.75 0.28 0.73 0.35 0.63 0.46
4.0 0.74 0.28 0.63 0.35 0.49 0.46
6.0 0.73 0.28 0.64 0.35 0.54 0.46
8.0 0.72 0.28 0.64 0.35 0.57 0.46
2,0 0.73 0.24 0.73 0.30 0.70 0.39
4.0 0.74 0.24 0.69 0.30 0.59 0.39
6.0 0.73 0.24 0.68 0.30 0.59 0.39
8.0 0.74 0.24 0.71 0.30 0.67 0.39
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Table 31
Coefficients of Transmission and Relative SFB Lengths;

Spectral Waves; d = 18,0 ft

Values of Ct and LSFB/Lp
for Indicated SFB Length

___Incident Spectrum 89.6 ft 118.4 ft

T , sec Hmo’ ft Ct LSFBZZi Ct LSFB/L
6.0 2.0 0.33 0.69 0.23 0.91
6.0 4,0 0.35 0.69 0.23 0.91
6.0 6.0 0.43 0.69 0.30 0.91
8.0 2.0 0.50 0.49 0.33 0.65
8.0 4.0 0.48 0.49 0.31 0.65
8.0 6.0 0.53 0.49 0.40 0.65
8.0 8.0 0.63 0.49 0.49 0.65
10.0 2.0 0.65 0.39 0.45 0.51
10.0 4,0 0.58 0.39 0.43 0.51
10.0 6.0 0.63 0.39 0.48 0.51
10.0 8.0 0.70 0.39 0.58 0.51
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Table 32
Coefficients of Transmission and Relative SFB Lengths;

Spectral Waves; d = 21,0 ft

Values of Ct and LSFB/Lp
for Indicated SFB Length

___Incident Spectrum 89.6 ft 118.4 ft

T , sec Hmo’ ft Ct LSF;7L Ct LSFB/L
6.0 2,0 0.38 0.65 0.28 0.86
6.0 4.0 0.38 0.65 0.26 0.86
6.0 6.0 0.43 0.65 0.29 0.86
8.0 2.0 0.538 0.46 0.40 0.61
8.0 4,0 0.54 0.46 0.39 0.61
8.0 6.0 0.56 0.46 0.42 0.61
8.0 8.0 0.65 0.46 0.53 0.61
10.0 2.0 0.70 0.36 0.55 0.48
10.0 4.0 0.65 0.36 0.49 0.48
10.0 6.0 0.65 0.36 0.52 0.48
10.0 8.0 0.71 0.36 0.61 0.48
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Side view of 89.6-ft SFB

Photo 1.
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Side view of 118.4-ft SFB

Photo 2.




Photo 3. View of model barges with and without the top decks attached
(side-connector tests)
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Photo 4, View of model barges with top decks in place
(side-connector tests)
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Photo 5. Bow view of model barge connectors and angularity gage
(side-connector tests)
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Photo 6., Close-up view of Force Gage 1 and spring mooring system N
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Close-up view of Force Gage 2

Photo 8.
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Photo 9. Instrumented half of model barge connector prior to placement of by
waterproofing sealer (side-connector tests) et Ay
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Photo 12.

water depth of 15 ft
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Side view of 89,6-ft SFB under attack of 10-sec, 4-ft monochromatic waves in a
water depth of 15 ft

Photo 14.
el




Side view of 89.6-ft SFB under attack of 10-sec, 6-ft monochromatic waves in a
water depth of 15 ft

Photo 15,
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Side view of 89.6-ft SFB under attack of l4-sec, 4-ft monochromatic waves in a
water depth of 15 ft

Photo 16.
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Side view of 89.6-ft SFB under attack of l4-sec, 6-ft monochromatic waves in a
water depth of 15 ft

Photo 17,
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10-ft monochromatic waves in a

Side view of 89.6-ft SFB under attack of 1l0-sec,

Photo 18.

water depth of 15 ft
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water depth of 15 ft

Side view of 89.6-ft SFB under attack of 6-sec, 4-ft spectral waves in a
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water depth of 15 ft
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Side view of 89.,6-ft SFB under attack of 10-sec, 4-ft spectral waves in a

Photo 28.
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Side view of 89.6-ft SFB under attack of l4-sec, 4-ft spectral waves in a

Photo 30,
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Side view of 118,4-ft SFB under attack of 10-sec, 8-ft spectral waves in a
water depth of 15 ft

Photo 35.
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F1Z VERSUS TIME FOR FIRST
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APPENDIX A: NOTATION

A Area, ftz

c Average wave transmission coefficient
c Wave transmission coefficient

d Water depth, ft

E(f) Spectral energy density function

Eo Spectral energy
f Frequency, sec
fm Peak frequency, sec

F Force, 1b or kips
g Gravity, ft/sec2
H Deep-water significant wave height, ft
H Wave height, ft
H Significant wave height, ft
H Transmitted wave height, ft
1 Mass moment of inertia, 1b (mass)/ft2

L Length or wavelength, ft

Lp Wavelength of peak spectral period
Tort Time or wave period, sec
Tp Spectral peak wave period

\ Volume, ft3

w Width, ft
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